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Abstract

Among various factors that can affect the performance of gait recognition, changes
in viewpoint pose the biggest problem. In this work, we develop a novel approach to
cross-view gait recognition with the view angle of a probe gait sequence unknown. We
formulate a Gaussian Process (GP) classification framework to estimate the view angle
of each probe gait sequence. To measure the similarity of gait sequences captured at dif-
ferent view angles, we model the correlation of gait sequences from different views using
Canonical Correlation Analysis (CCA) and use the correlation strength as similarity mea-
sure. This differs significantly from existing approaches, which reconstruct gait features
in different views either through 2D view transformation or 3D calibration. Without ex-
plicit reconstruction, our approach can cope with feature mis-match across view and is
more robust against feature noise. Our experiments validate that the proposed method
significantly outperforms the existing state-of-the-art methods.

1 Introduction
Gait is a behavioural biometric particularly useful for non-intrusive and/or non-cooperative
person identification from a distance in unconstrained public spaces. However, such envi-
ronments also increase the difficulties in gait recognition compared to a more controlled one
with constantly known view angle. This is largely because that various factors can affect gait
including people walking in different clothes, under different carrying conditions, at variable
speed, in different shoes and from arbitrary views. In particular, changes in view angle pose
one of the biggest challenges to gait recognition as it can change significantly the available
visual features for matching (see Fig. 1).

Early works on multi-view gait recognition fall into two categories: 1) extracting view
invariant features, and 2) view synthesis based on 3D calibration. Approaches in the first
category aim to extract gait features that are invariant to view change. Self Similarity Plots
(SSP) is one such feature that has been exploited for both action recognition [10] (inter-class)
and gait recognition [2] (intra-class). However, SSP lacks sufficient discriminative power
for effective intra-class discrimination required by gait recognition, as demonstrated by the
findings in [2]. Alternatively, a statistical method for extracting view invariant features from
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Gait Energy Images (GEI) was proposed by [7] by which only parts of gait sequences that
overlap between views are selected for constructing a representation for gait matching across
views. The approach cannot cope with large view angle changes under which gait sequences
of different views can have little overlap. Extracting normalized trajectories of body parts
is another view invariant feature based approach [9]. However tracking of body parts is
unreliable due to self-occlusion. In addition the problem of body parts becoming invisible
given large view angle change remains. Approaches in the second category either use a single
camera and assume the subjects to be far away from the camera and perform a view synthesis
for an arbitrary view using planar imaging geometry [5, 11], or use cooperative multi-camera
set-up to extract 3D structure information via camera calibration [3, 17, 21]. Methods based
on the planar view assumption have a disadvantage in that these methods cannot cope with
large variations in view angle. On the other hand techniques based on 3D reconstruction
are only suitable for a fully controlled and cooperative multi-camera environment such as a
biometric tunnel [16].

Recently a number of approaches [12, 14] based on view transformation have been pre-
sented which have the potential to cope with large view angle changes and do not rely on
camera calibration. These approaches aim to learn a mapping relationship between gait
features of the same subject observed across views. When matching gait sequences from
different views, the gait features are mapped/reconstructed into the same view before a dis-
tance measure is computed for matching. An advantage of these methods is that they have
better ability to cope with large view angle change compared to earlier works. However, a
view transformation based method also has a number of drawbacks 1) it suffers from degen-
eracies and singularities caused by features visible in one view but not in the other when the
view angle difference is large. 2) The reconstruction process propagates the noise present in
the gait features in one view to another thus decreasing recognition performance.

In this paper we propose a novel approach to cross view gait recognition by addressing
the problems associated with the view transformation model. Specifically we model the cor-
relation of gait sequences from different views using Canonical Correlation Analysis (CCA).
A CCA model projects gait sequences from two views into two different subspaces such that
they are maximally correlated. Similar to the existing view transformation methods, the CCA
model also captures the mapping relationship between gait features of different views, albeit
implicitly. However, rather than reconstructing gait features in the same view and matching
them using a distance measure, we use the CCA correlation strengths directly to match two
gait sequences. This brings out two key advantages: 1) by projecting the gait features into
the two subspaces with maximal correlation, features that become invisible across views are
automatically identified and removed. 2) without reconstruction in the original gait feature
space, our approach is more robust against feature noise. In this paper we also address the
problem of view angle recognition using Gaussian Process (GP) classification [18] in order
to build a complete gait recognition system with probe sequence view angle unknown. This
differs from existing approaches which assume the probe view angle is known. Experiments
are carried out to demonstrate that 1) our GP classification based view angle recognition
method effectively identifies the view angle and is superior when compared to an SVM
based method; 2) The gait recognition performance of our method significantly outperform
those of the existing view transformation models [12, 14] even when they assume known
probe sequence view angle.
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2 Cross View Gait Recognition
We assume that a multi-view gait training dataset is available in which gait sequences of
subjects are available in all views. Also the subjects appearing in the training dataset are
independent from the subjects in the test dataset in which only a single view sequence is
required for each subject. This means that the system can be independently trained on an
available dataset and then be tested on a different dataset.

2.1 Gait Representation
Given a human walking sequence, a human silhouette is extracted from each frame using
the method of [15]. After applying size normalization and horizontal alignment to each
extracted silhouette image, gait cycles are segmented by using the method in [12]. We then
compute two gait representations, one for view angle recognition and the other for cross-view
gait recognition.

(a) 36◦ (b) 54◦ (c) 72◦ (d) 90◦ (e) 108◦ (f) 126◦ (g) 144◦

Figure 1: Top row: GEIs of a same subject for different views. Bottom row: TGEIs obtained
from the GEIs in the top row.

For view recognition, gait sequences are represented using Truncated Gait Energy Im-
ages (TGEI). TGEI is simply Gait Energy Image (GEI) [6] without its top part (head & torso)
and is generated by only taking the bottom one third of the GEI (see Fig. 1). In this work
TGEI is used to learn the Gaussian Process Classifier for view angle recognition. The ad-
vantage of using TGEI instead of GEI for view recognition becomes clear on a closer look
at Fig. 1. It can be seen that the torso part of the GEI (which constitutes a major portion of
it) for view angle 144◦ and 54◦ (Fig. 1(b) and (g)) is almost identical. This would make the
classification process prone to errors. The same can be said for view angles 72◦ and 126◦

(Fig. 1(c) and (f)). In contrast, if we observe the bottom row of Fig. 1 we see that the TGEI
for view angles 144◦ and 54◦ are completely different and also there are visible changes in
TGEI for view angles 72◦ and 126◦. We thus select TGEI as our feature to learn the view
classifier.

Gait Flow Images (GFI) [1] are used as a gait feature for cross view gait recognition.
GFIs provide more discriminative representation for identity recognition compared to GEI
by looking at multiple independent motion of different body parts during a gait cycle [1].
It is robust against various covariate conditions such as carrying and clothing [1]. Gait in-
formation is captured in a set of motion descriptors including a motion intensity descriptor
(representing shape information) M , and 3 motion direction descriptor M+

x ,M−x ,M+
y (repre-

senting motion information) corresponding to the right, left and up directions. Example GFIs
for a single subject from 54◦ and 126◦ in normal walking conditions are shown in Fig. 2.

The reason why we use different representation for view recognition and gait recognition
is clear by comparing Fig. 1 and Fig. 2. In particular, for view recognition, which can be seen
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as an inter-class classification problem compared with the intra-class one in gait recognition,
it is necessary to remove the top two third as most of the information there is invariant to
view change (e.g. large part of torso). However, there are useful gait features that contribute
towards better recognition performance of gait [1, 4, 13] although this information is largely
concerned with appearance not kinematic or motion aspect of human gait. On the other hand,
since GFI captures much inter-subject variations, it is good for gait recognition but causes
problem for view recognition because these variations now become intra-class variations.

(a) M(54◦) (b)M+
x (54◦) (c) M−x (54◦) (d) M+

y (54◦)

(a) M(126◦) (b)M+
x (126◦) (c) M−x (126◦) (d) M+

y (126◦)

Figure 2: Gait Flow Image (GFI) descriptors for a subject under normal walking conditions
from the CASIA dataset in (54◦) (top row) and (126◦) (bottom row).

2.2 Learning a Gait View Classifier Using Gaussian Processes
Gaussian Processes (GP) have been used in regression [19] and classification problems [18].
These models are flexible as no selection of model complexity is required (as compared to
e.g. Gaussian Mixture Models). GP are closely related to Support Vector Machines (SVM).
A key advantage of GP compared to SVM is that they are probabilistic models that allow to
incorporate prior information about data distribution. This often results in more robust and
better models.

We assume that TGEI have been calculated from the available multi-view training data.
Before we can train our GP classifier dimensionality reduction is required in order to make
the computations feasible. Principle Component Analysis (PCA) is used for this purpose.
Let {x1, ...,xN} be d̃ < d dimensional component space representation of N, d-dimensional
TGEI templates belonging to C views. The GP Classifier is trained using the reduced di-
mensional xi where i = 1, ...,N. The classification model uses a latent function f which
is never observed. What is observed are the xi values and the class labels y. We define
y as vector of the same length as the latent function f which for each i = 1, ...,N has an
entry of 1 for the class which is the label for example i and 0 for other C− 1 entries.
The vector of latent function values at all N training points and C class labels is given by
f = ( f 1

1 , ..., f 1
N , f 2

1 , ..., f 2
N , ..., f C

1 , ..., f C
N )

T . The prior over f has the form f ∼N (0,K) where
K is the matrix of covariance function values. The covariance function expresses the cor-
relation between the data values. We select the squared exponential covariance function to
encode our prior knowledge. This means that points lying close together are closely corre-
lated or in other words gait features that resemble each other (belonging to same view) are
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highly correlated. The squared exponential covariance function is given as

K(x,x′) = σ
2exp

(
−1

2
(x− x′)T

∑(x− x′)
)

(1)

where σ defines the magnitude and ∑ = l−2I, l are the characteristic length scales (learnable
hyperparameters of the covariance function) and are associated with the relative importance
of different inputs to prediction. The posterior over the training data defined by p(f|X ,y)
is not analytically tractable and a Laplace approximation is used instead. More details can
be found in [18]. A test point x∗ represented in the component space is then classified by
computing the predictive distribution of f∗ = f(x∗) = ( f 1

∗ , ..., f C
∗ )

T defined by q(f∗|X ,x∗, f)
[18], where X is the matrix of training data.

The learned GP gait view classifier is expected to make errors which in turn will also
introduce potentially model mismatch in gait sequence correlation to be described in the next
section. To minimise such error propagation, instead of directly using the top label returned
from the GP pose classifier, we make a soft decision and look at the top two candidates.
This is because the returned labels are rank 2 correct at least 98% on our test dataset (see
experiment section). We therefore use a weighted approach and fuse the scores returned
from the top two class labels suggested by the classifier. The weights are calculated by
normalizing the confidence of the classifier in the top two labels.

Note that as a person moves in space, the view angle with respect to the camera is likely
to change continuously. This could mean that two cycles from a gait sequence may be
classified into two different views. Our GP classifier caters for this and works on per cycle
basis (i.e. a separate TGEI is generated for each cycle).

2.3 Learning Cross View Correlation Model
We use Canonical Correlation Analysis (CCA) [8] to perform recognition across views by
using the correlation strength as a measure of similarity. CCA is a linear method1 and mea-
sures the relationship between two sets of multidimensional variables . CCA finds two bases
one for each set of variable in such a way that the two sets of variables are maximally corre-
lated.

To learn the cross view correlation model using CCA we compute the GFI for the multi-
view training dataset. PCA is used to reduce the dimensionality of the GFI descriptors to
make the computations feasible. Since the GFI are composed of more than one descriptor,
in the following we describe the learning process for one of the gait flow descriptors M. A
similar method is used for the remaining descriptors M+

x ,M−x ,M+
y . Let X = {x1, ...,xN} be

matrix of d̃ < d dimensional component space representation of N d-dimensional M tem-
plates in view Vθx and Y = {y1, ...,yN} be the component space representation in view Vθy .
Let the linear combinations of canonical variables be x = wx

T x and y = wy
T y. CCA can now

be defined as

ρ =
E[xy]√

E[x2]E[y2]
=

E[wx
T xyT wy]√

E[wxT xxT wx]E[wyT yyT wy]
(2)

which can also be written in terms of covariance matrices as

ρ =
wx

TCxywy√
wxTCxxwxwyTCyywy

(3)

1A kernel version of CCA has been tested in our experiments and shown inferior performance, which suggests
the linear assumption is valid.
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where Cxx,Cyy are the within sets and Cxy the between sets covariance matrices. CCA maxi-
mizes ρ by solving for the derivative of Eqn. 3 and setting it to zero. This yields the following
eigenvalue equations.

C−1
xx CxyC−1

yy Cyxwx = ρ
2wx (4)

C−1
yy CyxC−1

xx Cxywy = ρ
2wx (5)

where eigenvalues ρ2 are the square canonical correlations and wx and wy are the basis
vectors.

Once wx and wy have been computed for Vθx and Vθy we do this for all the view combi-
nations in the multi-view training dataset in order to complete the learning process. We are
now able to perform cross view gait recognition using GP classification and CCA correlation
strengths.

2.4 Cross View Gait Recognition
To perform recognition across view we have gait templates of subjects in view Vθg as our
gallery data. Any probe sequence in an arbitrary view Vθp and variable covariate conditions
for the subjects in the gallery can now be recognized. The essence is to use the correct
model to compute correlation strengths for matching across views. This is done by using the
learned GP classifier to identify the view angle of the probe sequence. Based on the output
from the classifier the corresponding CCA models are then used for computing correlation
strengths for matching across views.

Specifically, we first compute the TGEI and GFI templates for the probe sequence. GP
classification is then applied using TGEI resulting in the predicted top 2 ranked class labels
and the confidence in each. Let the top 2 views identified by the classifier be Vθ1 and Vθ2
with confidence ωθ1 and ωθ2 , we normalise ωθ1 and ωθ2 so that they sum to 1.

After view classification we use the trained CCA models for Vθ1 →Vθg and Vθ2 →Vθg to
compute correlation strength scores between the probe template and a gallery one. Since the
GFI comprise of four descriptors for each gait cycle we describe this process for one of the
descriptors, M. The same procedure can be applied to the remaining descriptors. Correlation
strength for the two templates are computed using Eqn. 3 and are given as ρ iM

θ1θg
and ρ iM

θ2θg

where i = 1, ...,n and n is the number of templates in the gallery view Vθg . The correlation
strength for M is then the weighted average of the correlation strength of the two models
weighted by the normalized confidence scores and is given as ρ iM = ωθ1ρ iM

θ1θg
+ωθ2ρ iM

θ2θg
.

Similarly we compute the correlation strength for other descriptors the final score is then
computed as follows

ρ
i = ρ

iM +ρ
iM+

x +ρ
iM−x +ρ

iM+
y (6)

The gallery sequence with the largest ρ i is then identified as the correct match. Since a test
sequence can have multiple gait cycles generating multiple templates in this case we use a
simple voting mechanism to generate the output label.

3 Experiments
Dataset–The CASIA Gait Database [20] was used for evaluating the performance of the pro-
posed approach, which is the largest publicly available multi-view gait dataset. The database
comprises of 124 subjects. For each subject there are 10 walking sequences consisting of 6
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normal walking sequences, 2 carrying-bag sequences and 2 wearing-coat sequences which
gives the dataset a coverage of most of the common covariate conditions encountered in real
life including the carrying condition and clothing condition. All the sequences are captured
from 11 different views starting from 0◦ with 18◦ offset resulting in gait view sequences
for 0◦ the front view, 18◦,36◦,54◦,72◦, 90◦ the front-to-parallel view, 108◦,126◦,144◦,162◦

and 180◦ the back view. Sample images for different views from the CASIA dataset are
shown in Fig. 3.

(a) 36◦ (b)54◦ (c) 72◦ (d) 90◦ (e) 108◦ (f) 126◦ (g) 144◦

Figure 3: Sample Images from the multi-view CASIA dataset for different view angles.

We use the gait sequences from 7 views from 36◦−144◦ in our multi-view experiments
because views close to the frontal and back views provide little gait information. Each
sequence in the dataset contains multiple gait cycles. The original image size of the database
is 320x240. The multi-view training set consists of 4 out of 6 normal sequences of 60% of
the total subjects in the dataset from views 36◦− 144◦. The remaining 40% of the subjects
are used for testing, i.e. the subjects used in training and testing are mutually exclusive. For
testing we form a gallery set and a probe set. The gallery set consists of the first 4 normal
sequences from views 36◦− 144◦. The probe set include the last 2 normal sequences (Set
A2), the 2 carrying bag sequences (Set B) and 2 wearing-coat sequences (Set C), all from
views 36◦−144◦.
View Classification with GP Classifier– We compare GP classification with Support Vector
Machines (SVM) for view classification. It can be seen from Table 1 that GP Classification
gives better results than SVM and also achieves satisfactory results for the dataset over all
covariate conditions and across all different views consistently. In contrast, although good
result is obtained for some views, SVM achieved very poor results for others (e.g. 54◦ and
108◦) even using identical feature representation as GP. Table 2 presents rank 2 results for the
classification experiment. From Table 2 it can be seen that the correct view is Rank 2 correct
almost all of the time for our GP classification whereas SVM lags in terms of performance
and again is inconsistent across different views. The excellent rank 2 results lead to the
development of algorithm described in Sec. 2.4 in using the confidence score from the top 2
results returned from the GP Classification algorithm.

Probe Set 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦

Set A2 (GP) 84.0% 91.2% 85.3% 74.0% 86.0% 91.2% 93.5%
Set A2 (SVM) 94.9% 40.5% 85.4% 64.3% 24.0% 43.6% 98.0%

Set B (GP) 83.4% 88.7% 84.9% 68.6% 83.0% 92.7% 93.5%
Set B (SVM) 96.1% 41.8% 79.3% 62.6% 28.1% 50.6% 97.9%
Set C (GP) 84.0% 91.2% 85.3% 74.0% 86.0% 91.2% 93.5%

Set C (SVM) 93.7% 50.0% 81.0% 61.2% 22.5% 41.5% 96.6%

Table 1: Rank 1 view classification results for GP and SVM.
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Probe Set 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦

Set A2 (GP) 98.0% 99.0% 98.8% 99.0% 99.0% 99.0% 99.0%
Set A2 (SVM) 98.7% 78.4% 92.4% 90.0% 82.9% 71.5% 100%

Set B (GP) 99.5% 99.5% 99.3% 98.8% 99.3% 99.2% 99.3%
Set B (SVM) 98.1% 79.0% 88.7% 88.6% 75.6% 79.2% 99.3%
Set C (GP) 98.1% 98.6% 99.5% 98.3% 98.6% 99.0% 97.9%

Set C (SVM) 97.5% 83.7% 86.0% 86.4% 66.2% 62.9% 97.9%

Table 2: Rank 2 view classification results for GP and SVM.

Figure 4: comparison of cross-view gait recognition performance under normal conditions.
(For 144◦ the results of FG+SVD [14] and GEI+TSVD [12] are not available.)

Cross View Gait Recognition using Correlation Strength– After view classification using
GP Classification we use correlation strength from CCA to perform gait recognition across
multiple views. The results are reported in terms of recognition rate for our method with
GFI (GFI+CCA), our method with known probe angle (GFI+CCA(P)), our method with
Gait Energy Image for gait representation (GEI+CCA). We also compared our approach
with state-of-the-art methods in [14] (FG+SVD), [12] (GEI+TSVD) and the baseline [20]
which simply matches GEI across views without any view transformation. Note that we

Citation
Citation
{Makihara, Sagawa, Mukaigawa, Echigo, and Yagi} 2006

Citation
Citation
{Kusakunniran, Wu, Li, and Zhang} 2009

Citation
Citation
{Makihara, Sagawa, Mukaigawa, Echigo, and Yagi} 2006

Citation
Citation
{Kusakunniran, Wu, Li, and Zhang} 2009

Citation
Citation
{Yu, Tan, and Tan} 2006



BASHIR et al.: CROSS-VIEW GAIT RECOGNITION USING CORRELATION STRENGTH 9

provide the results for gait energy image (GEI+CCA) using our approach to provide a direct
comparison with alternative approaches which also use GEI for gait representation. The
results obtained using GEI and GFI also give insight on their ability to cope with different
covariate conditions such as carrying and clothing.

The results under normal conditions are shown in Fig. 4. It can be seen from Fig. 4 that
our method significantly outperforms the existing methods over all views. It is interesting
to note that the performance of FG+SVD [14] and GEI+TSVD [12] in some cases even
falls below the Baseline [20] which does not compensate for view change at all. In contrast
our approach beats the baseline approach comfortably. It is also worth pointing out that all
alternative methods assume the view angles are known a prior and our approach does not
make this assumption and recognise the view angle automatically. Fig. 4 also shows that
when probe view angle is known (GFI+CCA(P)), the result is almost identical to the one
with GP classification (GFI+CCA) which emphasizes that our classification algorithm based
on rank 2 results effectively classifies unknown probe sequences. Comparing GFI+CCA
with GEI+CCA it is clear that GFI is a better gait representation. This result is consistent
with those reported in [1] for gait recognition under the same view angle.

Figure 5: comparison of cross-view gait recognition performance under changing carrying
and clothing conditions.

We have also tested the performance of our approach under variable covariate conditions
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present in the dataset i.e. the clothing and the carrying conditions. We compare the results of
our approach (GFI+CCA) with Baseline [20] and with our method using gait energy image
(GEI+CCA) only as [12, 14] did not present the results for these experiments. The results
are shown in Fig. 5. Again, our approach consistently outperforms the baseline methods.
Fig. 5 also shows that the advantage of GFI over GEI become more apparent under changing
carrying and clothing conditions as GFI was specifically designed for coping with different
covariate conditions [1].

4 Conclusion
We have developed a novel cross-view gait recognition approach using Gaussian Process
classification for view recognition and correlation strengths from CCA which act as a mea-
sure of similarity across views. Our method works with probe sequence in any view under
variable covariate conditions. The system significantly outperforms state-of-the-art on all
view combinations and is also effective in dealing with covariate conditions across views.
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