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Abstract

Insect species recognition is a typical application of image categorization and ob-
ject recognition. Unlike generic image categorization datasets (such as the Caltech 101
dataset) that have large variations between categories, the difference of appearance be-
tween insect species is so small that only some entomologist experts can distinguish
them. Therefore, the state-of-the-art image categorization methods do not perform suffi-
ciently on insect images. In this paper, we propose an insect species recognition method
based on class specific sparse representation. On obtaining the vector representation
of image via sparse coding of patches, an SVM classifier is used to classify the image
into species. We propose two class specific sparse representation methods under weakly
supervised learning to discriminate insect species which have substantial similarity to
each other. Experimental results show that the proposed methods perform well in in-
sect species recognition and outperform the state-of-the-art methods on generic image
categorization.

1 Introduction
Insect species recognition is widely applied in agriculture, ecology, and environmental sci-
ence. Comparing to face recognition and generic object categorization, insect species recog-
nition needs more expert knowledge. That means without some professional experience it is
almost impossible for laymen to determine an insect category in the level of species. As a
result, insect species recognition using computer vision methods is more and more required
in application. The goal of our research is to develop a computer vision method which
is convenient (without so much interaction such as alignment, rotation and segmentation),
foolproof (not necessary to have expert knowledge), and inexpensive (only needing a PC, a
digital camera and little human labor) to partly take place of expert entomologists in some
area and help entomologists lighten heavy labor in their researches.

Besides its practical importance, automated recognition of insect species raises many
fundamental computer vision challenges. Most insects are composed of several sub-parts
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(legs, antennae, tails, wing pads, etc.) and many degrees of freedom. Some species are
distinctive; others are very difficult to identify [4]. To develop a method which is invariant
to pose, size, and orientation is the challenge we have to face in insect species recognition
and many other computer vision applications.

Our bases construction methods are motivated by the sparse coding spatial pyramid
matching (ScSPM) model for generic image categorization by Yang et al. [13], sparse rep-
resentation based classification (SRC) algorithm for face recognition by Wright et al. [11]
and image restoration method by Mairal et al. [8]. All of the three methods are based on
sparse representation which is very popular in computer vision, image processing and ma-
chine learning. The term "sparse representation" refers to an expression of the input signal
as a linear combination of base elements in which many of the coefficients are zero [11].
Comparing to [13], [11] and [8], we calculate bases of each class to obtain the class specific
sparse representations in the strategies of minimal reconstruction residual and sparsity of lo-
cal features. Experiments on insect species dataset and generic image categorization dataset
show the validity of our approach.

The remainder of this paper is organized as follows. In Section 2 we will talk about some
related works. Section 3 details class specific sparse representation methods which is an ex-
tension of the traditional sparse coding. Section 4 presents the application problem of insect
species recognition. In Section 5, we will give the experiment results on our Tephritidae
dataset and Caltech 101 dataset [7]. Finally, Section 6 concludes our paper.

2 Related works

We divide our discussion of related works into two parts. First, we review related works in
insect recognition systems. Then we discuss some related works in generic object catego-
rization and other areas.

2.1 Insect recognition systems

Over the years many works have been done on automated insect recognition. Species iden-
tification, automated and web accessible (SPIDA-web) [3] is an automated spider1 species
recognition system that applies neural networks to wavelet encoded images. Digital auto-
mated identification system (DAISY) [9] based on eigen-images is applied to several families
of insects. The automated bee identification system (ABIS) [1] takes geometric features from
a photograph of a bee’s forewing and uses SVM for classifying. All of the three approaches
require manual manipulations and interactions. Larios et al. [4] developed an insect iden-
tification system which combines PCBR detector, SIFT descriptor, bag-of-features model
and logistic model tree as learning algorithm. This system doesn’t require any interaction
(weakly supervised) and gets good result (80%+) for application. However, compared to our
dataset ( 20 species and 3 to 20 images per species) their dataset has only 4 species and 124
to 463 images per species which is much easier for training and classifying.

1In the view of biology, spiders are not belong to Insecta. However spiders and insects have much similarity
and are both belong to Arthropoda. So we introduce the spider recognition system together with the other insect
recognition systems.

Citation
Citation
{Larios, Deng, Zhang, Sarpola, Yuen, Paasch, Moldenke, Lytle, Correa, Mortensen, Shapiro, and Dietterich} 2008

Citation
Citation
{Yang, Yu, Gong, and Huang} 2009

Citation
Citation
{Wright, Yang, Ganesh, Sastry, and Ma} 2009

Citation
Citation
{Mairal, Elad, and Sapiro} 2008

Citation
Citation
{Wright, Yang, Ganesh, Sastry, and Ma} 2009

Citation
Citation
{Yang, Yu, Gong, and Huang} 2009

Citation
Citation
{Wright, Yang, Ganesh, Sastry, and Ma} 2009

Citation
Citation
{Mairal, Elad, and Sapiro} 2008

Citation
Citation
{Li, Fergus, and Perona} 2004

Citation
Citation
{Do, Harp, and Norris} 1999

Citation
Citation
{O'Neill, Gauld, Gaston, and Weeks} 2000

Citation
Citation
{Arbuckle, Schroder, Steinhage, and Wittmann} 2001

Citation
Citation
{Larios, Deng, Zhang, Sarpola, Yuen, Paasch, Moldenke, Lytle, Correa, Mortensen, Shapiro, and Dietterich} 2008



LU et al.: INSECT SPECIES RECOGNITION USING SPARSE REPRESENTATION 3

2.2 Generic object categorization and others
In the past decade several efficient approaches to generic object categorization have ap-
peared. Among them, bag-of-features (BOF) [2], spatial pyramid matching (SPM) [5] and
sparse coding spatial pyramid matching (ScSPM) [13] are the most popular methods based
on local features. These methods work by partitioning the image into small patches, com-
puting histograms or sparse codes and taking single or multiple layers’ pooling to represent
an image by a vector. Then, any training method such as SVM could be used for classifying.
This framework is simple and computationally efficient so our work is also based on this
framework. Another tendency is that sparse representation is more and more widely used
in object categorization and other areas such as face recognition. Sparse representation is
powerful due to the fact that most important kinds of signal (audio or images) have natu-
rally sparse representations with respect to fixed bases [12]. Wright et al. [11] proposed a
robust and highly accurate face recognition method based on sparse representation. How-
ever their face dataset are all cropped and normalized so that the overcomplete dictionary
are the training images themselves. But this is not the case in our problem. We wish to
develop a weakly supervised approach without any manual interaction so we benefit from
the patch-wise residual idea from image restoration method by Mairal et al. [8].

3 Class specific sparse representation methods
We first introduce some conceptions of sparse representation. Then we detail our class spe-
cific bases construction and sparse coding methods.

3.1 Conception
The goal of sparse representation (coding) is to represent an input vector approximately
as a linear combination of a small number of basis vectors (column of the codebook or
dictionary). These basis vectors can capture high-level patterns in the input data [6]. Let
X = [x1,x2, . . . ,xN ] ∈ RD×N be the input matrix (each column is an input vector), let B =
[b1,b2, . . . ,bK ] ∈ RD×K be the basis matrix (each column is a basis vector), and let S =
[s1,s2, . . . ,sN ] ∈ RK×N be the coefficient matrix (each column is a coefficient vector). D is
the dimension of input vectors, N is number of input vectors, and K is the number of bases.
Then, the optimization problem above can be formulated as:

min
B,S

N

∑
n=1
‖xn−Bsn‖2

2 +λ‖sn‖1

s.t. ‖bk‖2 ≤ c, ∀k = 1,2, . . . ,K

(1)

Where ‖·‖2 means Euclidean ( L2) norm and ‖·‖1 means L1 norm. The constraint for bases:
‖bk‖2 ≤ c, ∀k = 1,2, . . . ,K is necessary because we can respectively multiply and divide an
infinitive large constant to B and sn which keeps ∑

N
n=1 ‖xn−Bsn‖2 unchanged while making

sn approach 0. However this is a trivial solution.

3.2 Class specific bases construction and sparse coding methods
Our bases construction method is based on the work of Yang et al. [13]. However their
method is more suitable for generic object image datasets which have more distinction be-
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tween classes than that of insect species. So motivated by the work of Wright et al. [11], we
adopt a class specific bases construction strategy. The holistic optimization problem can be
formulated as:

min
Bi,S(i)

Ni

∑
ni=1
‖x(i)ni −Bis

(i)
ni ‖

2
2 +λ‖s(i)ni ‖1, f or i = 1,2, . . . ,C

s.t. ‖bi,ki‖2 ≤ c, ∀ki = 1,2, . . . ,Ki

(2)

For each class we calculate its own basis matrix by an iterative process. Firstly we randomly
initialize basis matrix Bi to calculate the new sparse codes s(i)ni for input vector x(i)ni for each
class i :

min
s(i)ni

‖x(i)ni −Bis
(i)
ni ‖

2
2 +λ‖s(i)ni ‖1 (3)

Then we fix sparse codes S and solve the following optimization problem with constraint:

min
Bi

Ni

∑
ni=1
‖x(i)ni −Bis

(i)
ni ‖

2
2

s.t. ‖bi,ki‖2 ≤ c, ∀ki = 1,2, . . . ,Ki

(4)

Lee et al. [6] has developed an efficient algorithm for solving this problem. We define
the basis matrix of each class as: Bi

.
= [bi,1,bi,2, . . . ,bi,Ki ] ∈ RD×Ki and C is the number of

classes. Wright et al. [11] combine the C basis matrices together to make a new matrix:
B .
= [B1,B2, . . . ,BC] = [bi,1,bi,2, . . . ,bC,KC ], however, we keep the C basis matrices separately

because of our local feature extraction strategy. Our method is under the assumption that
the basis matrix calculated from a class takes more discriminative information and is more
precise to reconstruct a new feature vector from the same class. Then we can take advantage
of the reconstruction residual introduced in [8].

Then, for any new input vector xnew, we can get C coefficient vectors (sparse codes) s(i)new
respectively to each basis matrix by solving the optimization problem:

min
s(i)new

‖xnew−Bis
(i)
new‖2

2 +λ‖s(i)new‖1, f or i = 1,2, . . . ,C (5)

Feature-sign search algorithm [6]is so efficient to solve this problem. Then we proposed
two strategies to concatenate the C coefficient vectors into one sparse vector to represent
the original input vector. The first one we call it minimal residual class specific sparse
representation (MRCSSR). That means we take the coefficient vector which minimizes the
residual of reconstruction as its original value and other vector as zero.

p = argmin
i
‖xnew−Bs(i)new‖2

snew = [0,0, . . . ,0︸ ︷︷ ︸
K1

,0,0, . . . ,0︸ ︷︷ ︸
K2

, . . . ,(s(p)
new)

T︸ ︷︷ ︸
K p

, . . . ,0,0, . . . ,0︸ ︷︷ ︸
KC

]T
(6)
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The second strategy we call it sparsest class specific sparse representation (SCSSR). That
means we take the coefficient vector which is sparsest to represent the original feature and
other vector as zero. Here we take L0 norm to evaluate the sparsity of the coefficient vectors.

p = argmin
i
‖s(i)new‖0

snew = [0,0, . . . ,0︸ ︷︷ ︸
K1

,0,0, . . . ,0︸ ︷︷ ︸
K2

, . . . ,(s(p)
new)

T︸ ︷︷ ︸
K p

, . . . ,0,0, . . . ,0︸ ︷︷ ︸
KC

]T
(7)

After calculating the sparse representation of each input vectors, any pooling method such
as averaging or max pooling [13] can combine these sparse codes of input vectors belonging
to the same sample together to obtain the final feature vectors. Then any learning method
such as neural networks or SVM is competent for the recognition task.

4 Application of insect species recognition

Tephritidae (fruit fly) is a family of insect which contains about 500 genera and about 4200
species [10]. A given species is harmful to specific one or two plants. However different
species appear too similar (as shown in the fist row of Fig.2) to be recognized by laymen
without any entomology knowledge. So it is urgent and economical to solve this problem
by computer vision methods. The goal of our approach is to recognize different Tephritidae
species without any interaction such as cropping, rotating or normalizing in both training
and testing stages.

Our scheme framework is shown in Fig.1. A dataset is divided into two parts: training
dataset and testing dataset. For both datasets, a sample is an image of Tephritidae (making
use of species labels in training dataset and not making use of the labels in testing dataset).
We transform all the images into gray scale and extract SIFT features of patches by densely
sampled from each image. So an image sample can be represented by a set of SIFT features.
After that we obtain C basis matrices B1,B2, . . . ,BC from the training dataset using Eq.(3) and
Eq.(4). And by Eq.(5) each SIFT feature can be translated into C sparse vectors s1,s2, . . . ,sC
.Then we concatenate the C sparse vectors into one vector by Eq.(6) or Eq.(7). Subsequently
we calculate the pooling function of all the vectors of patches in the same image. This spatial
pyramid pooled vector is the final representation of an image sample which can be used by
any machine learning method for classification. For a testing image represented by a set of
SIFT features, it can also be translated into a sparse vector by the basis matrices calculated
aforementioned and we can use the classifier we have learned to determine the image label.

Our Tephritidae dataset is composed of 3 genera and 20 species. Each specimen is taken
one photograph respectively of its whole body, head, thorax, abdomen and wing (as shown
in Fig.2). So we divide the whole dataset into 5 sub-dataset according to different part of
specimen. Because the wings are crisp and vulnerable in the preservation, the photographs
of wings are less than that of the other parts. Considering the case that there is only one
photograph of a specimen in some species, we have no idea to divide the data of these
species into training and testing subsets. So we discard these photographs to obtain a dataset
appropriate for experiment. Table. 1 shows the number of species and photographs of the 5
sub-datasets.

Citation
Citation
{Yang, Yu, Gong, and Huang} 2009

Citation
Citation
{Wang} 1996



6 LU et al.: INSECT SPECIES RECOGNITION USING SPARSE REPRESENTATION

Figure 1: Our insect species recognition scheme framework. Ni is the number of training
local features in species i, Qj is the number of local features in testing image j and Km is the
number of bases in species m.

Figure 2: Example of our Tephritidae dataset: each column is corresponding to one species
and the rows are respectively whole body, head, thorax, abdomen and wing photographs of
the corresponding species taken by a microscope camera.
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Sub-dataset Whole Head Thorax Abdomen Wing
Species 19 19 20 17 14
Images 152 143 151 144 103

Table 1: Number of species and images in each sub-dataset.

1 training sample 2 training samplesSub-dataset
1 layer 2 layers 3 layers 1 layer 2 layers 3 layers

Whole 63.11 ± 0.37 46.47 ± 0.20 39.07 ± 0.53 77.91 ± 0.16 65.94 ± 0.47 60.49 ± 0.28

Head 67.99 ± 0.19 64.41 ± 0.24 55.91 ± 0.45 80.15 ± 0.18 78.77 ± 0.27 75.61 ± 0.26

Thorax 77.22 ± 0.18 74.88 ± 0.35 70.06 ± 0.43 83.35 ± 0.10 82.20 ± 0.13 79.13 ± 0.16

Abdomen 70.73 ± 0.27 66.61 ± 0.36 59.47 ± 0.38 80.80 ± 0.14 78.22 ± 0.35 74.50 ± 0.13

Wing 56.46 ± 0.68 48.94 ± 0.25 49.52 ± 0.38 71.56 ± 0.49 65.71 ± 0.36 60.76 ± 0.29

Table 2: Recognition rate (%) with SCSSR method.

5 Experiments and results

5.1 Experiment configuration
In the experiments, we evaluate our two class specific sparse representation methods on
the Tephritidae dataset and the generic Caltech101 dataset. As in [13] we extract SIFT
descriptor from 16×16 pixel patches which are densely sampled from each image on a grid
with a stepsize of 8 pixels. We use multi-layer Max-pooling ScSPM [13] and linear SVM
for training the classifier and evaluate our result by 10-fold cross validation.

5.2 Results
Firstly, we show our results on the Tephritidae dataset. Because some species of the dataset
has only 3 photographs, we can obtain results by taking 1 or 2 samples from each species
for training and the others for testing. We set the number of layers of spatial pyramid as
1, 2 or 3. The number of bases constructed in each species is fixed to 256. The result
of our sparsest class specific sparse representation (SCSSR) method and minimal residual
class specific sparse representation (MRCSSR) method are respectively shown in Table 2
and Table 3.

Through the results we find that when the number of layers of spatial pyramid increases,
however, the recognition rate almost synchronously decreases. This may be caused by the

1 training sample 2 training samplesSub-dataset
1 layer 2 layers 3 layers 1 layer 2 layers 3 layers

Whole 67.41 ± 0.48 60.60 ± 0.35 49.30 ± 0.45 78.84 ± 0.24 73.42 ± 0.57 54.38 ± 0.36

Head 71.07 ± 0.17 64.39 ± 0.19 61.67 ± 0.47 83.53 ± 0.20 81.66 ± 0.26 70.20 ± 0.26

Thorax 80.14 ± 0.26 77.31 ± 0.18 74.37 ± 0.18 88.50 ± 0.12 88.74 ± 0.17 80.18 ± 0.24

Abdomen 76.29 ± 0.26 73.11 ± 0.38 66.27 ± 0.45 85.68 ± 0.23 83.57 ± 0.26 70.86 ± 0.36

Wing 62.20 ± 0.51 54.00 ± 0.41 54.60 ± 0.59 73.93 ± 0.51 74.29 ± 0.41 60.75 ± 0.35

Table 3: Recognition rate (%) with MRCSSR method.
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Sub-dataset Whole Head Thorax Abdomen Wing
SPM 24.73 ± 0.27 21.68 ± 0.47 27.66 ± 0.38 26.03 ± 0.62 26.15 ± 0.53

ScSPM 25.81 ± 0.48 23.52 ± 0.51 31.32 ± 0.40 33.04 ± 0.65 38.55 ± 0.63

SCSSR 77.91 ± 0.16 80.15 ± 0.18 83.35 ± 0.10 80.80 ± 0.14 71.56 ± 0.49

MRCSSR 78.84 ± 0.24 83.53 ± 0.20 88.50 ± 0.12 85.68 ± 0.23 73.93 ± 0.51

Table 4: Recognition rate (%) comparison of different methods on each sub-dataset.

Number of training samples 15 30
SPM 54.28 ±0.56 64.53 ±0.72

ScSPM 65.46 ±0.69 73.71 ±0.53

SCSSR 68.12 ±0.73 74.21 ±0.82

MRCSSR 69.38 ±0.54 75.15 ±0.66

Table 5: Recognition rate (%) comparison of different methods on Caltech101 dataset.

arbitrary orientation of the insect located in the images. As far as we know, the SPM method
can not solve the rotation invariance problem. So if the insects in the dataset have severely
varied orientations, multi-layer SPM does not work better than single-layer SPM (which
degenerates to bag-of-feature). According to the result, we can also deduce this argument.
As shown in Fig.1, the insect images in Whole Body and Head sub-dataset is more vari-
ant in orientations. As a matter of fact, by increasing the number of layers the results of
these two sub-dataset deteriorate severely while the results of stable orientation sub-datasets
such as Thorax’s deteriorate more mildly. We have to say another reason that the Thorax
sub-dataset gets the best result is that the Thorax part is more salient and takes more discrim-
inative information to distinguish different species. We can get this conclusion by comparing
different sub-datsets in Fig.2. Further more, we find that the MRCSSR method is superior
to the SCSSR method. This gives us some cue that reconstruction residual may take more
discriminative information in recognition.

Secondly, we compare our methods with ScSPM [13]and traditional SPM [5] on our
dataset. To be fair, we set the number of the holistic bases in ScSPM and the number of
cluster center in SPM to 256×C, where C is number of species in each sub-dataset. We set
the number of layer to 1 and the number of training samples to 2. The result is shown in
Table 6. According to the result our two methods remarkably outperforms the other meth-
ods. It may be because that the class specific methods can discover the most discriminative
representation and are more suitable for our Tephritidae dataset.

Finally, we compare our methods with ScSPM and traditional SPM on Caltech101 dataset.
The result in Table 5 shows that our methods outperform the others. The reason that the
recognition rates are not promoted remarkably by our methods is that we limit the number
of bases to 20 of each category in order to get a moderate length of the concatenated sparse
vector. Too little bases may cause the loss of expressivity to represent the SIFT features of
batches.
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6 Conclusions and future works
In this paper we proposed two class specific sparse representation methods for insect species
recognition. These methods use class specific sparse vectors instead of traditional sparse
coding vectors for insect image patches. Our experiments on the Tephritidae dataset and Cal-
tech101 dataset demonstrated the effectiveness of our methods. We believe that constructing
a basis matrix for each class will take more discriminative information into the final sparse
representation and both the minimal residual and the sparsest strategy remove some noise
among other similar classes and remain the information which is utmost expressive for the
true classes.

Our further works will focus on the following three directions: 1. The SPM pooling
methods can not solve the case of orientation variety. So we are interested in some rotation
invariance methods to make the sparse representation more robust. 2. Now our experiments
are conducted separately on the five different sub-datasets. We suppose that a user may take
photographs of several sub-parts of an insect. So how to combine all recognition outputs
together to get a better result is mainly our task in next stage. 3. In spite of our class specific
sparse representation methods earn good results and take some discriminative information
from the separation of basis construction of different classes, there is no explicit discrimina-
tive terms in the optimization function to calculate basis matrices. If the optimizing process
contains some explicit discriminative terms we suppose that the recognition result will be
much better.
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