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Figure 1: Learning shape models from 3D CAD data. (a) Collection of
3D CAD models composed of semantic parts, (b) viewpoint-dependent,
non-photorealistic renderings, (c) learned spatial part layouts, (d) multi-
view detection results.

In the 70’s and 80’s the predominant approach to recognition was based
on 3D representations of object classes [2, 6, 7, 8, 9]. While being based
on an intriguing paradigm, these approaches showed only limited success
when applied to real-world images. This was due to both the difficulty
to robustly extract 2D image features and the inherent ambiguity when
matching them to 3D models. Today, the predominant paradigm to recog-
nition relies on robust features and powerful machine learning techniques.
While enabling impressive results, these methods have at least two in-
herent limitations: they are typically limited to a single viewpoint, and
rely on the existence of sufficient representative real-world image train-
ing data, limiting their generality and scalability.

The starting-point of this paper is therefore to go back to the idea
of learning object class models from 3D computer aided design (CAD)
models (Fig. 1(a)), not using any real-world training images of the object
class of interest. In contrast to early approaches, we draw from a multi-
tude of advancements in both object class recognition and 3D modeling,
which we use as tools for designing highly performant object class mod-
els. The first tool is an abstract shape representation that establishes the
link between 3D models and natural images. It is based on the viewpoint-
dependent, non-photorealistic rendering of 3D CAD model edges (silhou-
ettes, creases, and part boundaries, Fig. 1(b)). The second tool is a collec-
tion of discriminatively trained part detectors [1], based on robust dense
shape feature descriptors on top of this representation (Fig. 1(b)). The
third tool is a powerful probabilistic model governing the spatial layout
of object parts in each viewpoint (Fig. 1(c)), capable of representing the
full covariance matrix of all part locations, reminiscent of the constella-
tion model [3]. All three tools aim at capturing representative object class
statistics from a collection of 3D CAD models, increasing the robustness
of the resulting object class model.

For a given viewpoint, following [10], we formulate recognition as a
MAP search over constellations H, given the shape of individual parts S,
their relative scales R, and their overall spatial layout X .

p(X ,R,S,H|θ) = p(S|H,θ)︸ ︷︷ ︸
Local Shape

p(X |H,θ)︸ ︷︷ ︸
Layout

p(R|H,θ)︸ ︷︷ ︸
RelativeScale

p(H|θ)︸ ︷︷ ︸
Prior

(1)

The MAP solution is approximated by efficient data-driven MCMC sam-
pling [12], using part detector responses as proposals. Multi-view recog-
nition is achieved by training individual detectors for a discrete set of
viewpoints (bank-of-detectors), and combining all detections via non-
maximum suppression.

Fig. 2 (first row) gives example car detections for the 3D object classes
data set [11] using a bank of 8 detectors, together with a quantitative com-
parison of multi-view recognition performance with related work (second
row, left) and a viewpoint confusion matrix (second row, right). Achiev-
ing an average precision (AP) of 81.0% (green curve), our bank of 8 de-
tectors clearly outperforms all three related approaches (APs 55.3% [11]
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Figure 2: Multi-view object class detection results. Example detections
(first row). Comparison to state-of-the-art ([4, 5, 11], second row, left),
confusion matrix for viewpoint classification (second row, right).

(cyan curve), 72.6% [4] (blue curve), and 76.7% [5] (magenta curve)).
Notably, all related approaches use real-world training images either as
the sole source of information [4, 11] or in combination with 3D mod-
els [5]. Relying solely on 3D CAD data further allows as to train models
for arbitrary viewpoints. We thus analyze both the sensitivity to viewpoint
variation and the required density of sampled viewpoints in our experi-
ments, improving the performance of our approach further by increasing
the number of detectors from 8 to 36 in a 10-degree spacing (Fig. 2, red
curve, AP 89.9%).
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