ZHANG, CHEN: IMPLICIT SHAPE KERNEL 1

Implicit Shape Kernel for Discriminative
Learning of the Hough Transform Detector

Yimeng Zhang School of Electronic and Computer
yz457@cornell.edu Enginerring
Tsuhan Chen Cornell University
tsuhan@ece.cornell.edu Ithaca, NY, USA

Abstract

The Hough transform provides an efficient way to detect objects. Various methods
have been proposed to achieve discriminative learning of the Hough transform, but they
have usually focused on learning discriminative weights to the local features, which re-
flect whether the features are matched on the object or the background. In this paper,
we propose a novel approach to put the whole Hough transform into a maximum margin
framework, including both the weights for the local features and their locations. This is
achieved through the kernel methods of the SVM. We propose a kernel that can be used
to learn a SVM classifier that determines the presence of the object in a subimage. The
kernel is designed such that during testing, the standard Hough transform process can
be used to obtain the exact decision scores of the SVM at every location and scale of
a test image. The experiment results show that our approach significantly improves the
detection performance over previous methods of learning the Hough transform.

1 Introduction

The sliding window approach has been widely used for object detection because it provides
a simple way to apply object recognition techniques to the detection task. A binary classifier
is evaluated at every scale and location in an image to determine the presence of the object
of interest in possible subwindows. The approach has been successful with various kinds of
features and classifiers [3, 4, 6, 7, 10, 15]. Despite its effectiveness, though, the exhaustive
search makes the approach inefficient in the case of a non-trivial classifier. The branch and
bound techniques [16, 17] have been proposed in recent years to avoid the exhaustive search
and still find the global optimal.

The Hough transform [2, 12, 13, 19, 22, 25] provides an alternative way to perform the
detection task in a much more efficient manner. The Hough transform based detector has
three main steps, as illustrated in Figure 1: 1) Each local patch in a test image is assigned
to a codeword. 2) According to the spatial information of the codebook learned from the
training images, each patch will cast weighted votes to the object locations and scales, and
obtain the initial Hough image. 3) In order to tolerate shape deformation, kernel density
estimation, such as Gaussian filtering in [13] or Mean-shift modes estimation in [14, 19], is
applied to the Hough image. This process gives us the final Hough image, and the peaks in
the Hough image are extracted as the detection hypotheses. Figure 1 also shows the three

© 2010. The copyright of this document resides with its authors. BMVC 2010 doi:10.5244/C.24.105
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Blaschko and Lampert} 2008

Citation
Citation
{Chum and Zisserman} 2007

Citation
Citation
{Dalal and Triggs} 2005

Citation
Citation
{Desai, Ramanan, and Fowlkes} 2009

Citation
Citation
{Felzenszwalb, McAllester, and Ramanan} 2008

Citation
Citation
{Harzallah, Jurie, and Schmid} 2009

Citation
Citation
{Lampert, Blaschko, and Hofmann} 2008

Citation
Citation
{Lehmann, Leibe, and van Gool} 2009{}

Citation
Citation
{Andriluka, Roth, and Schiele} 2008

Citation
Citation
{Fritz, Leibe, Caputo, and Schiele} 2005

Citation
Citation
{Gall and Lempitsky} 2009

Citation
Citation
{Leibe, Leonardis, and Schiele} 2008

Citation
Citation
{Maji and Malik} 2009

Citation
Citation
{Okada} 2009

Citation
Citation
{Gall and Lempitsky} 2009

Citation
Citation
{Gu, Lim, Arbelaez, and Malik} 2009

Citation
Citation
{Leibe, Leonardis, and Schiele} 2008

2 ZHANG, CHEN: IMPLICIT SHAPE KERNEL

3

1)Match patch f, to word C, with P(C, | f,) @
: T Spatial Voting

@Kernel Density Estimation

y °

1 ~ —> @ ;‘%
P(OIC) X
— —P0I0.Cyl)

2

Learned weights

Figure 1: The illustration for the Hough transform. The three steps for testing an image are
indexed with red circles. The three weights we need to learn are indexed with green circles.

weights we need to learn. The implicit shape model [19] puts the Hough transform into
a probabilistic formulation by learning the locations of the codewords (weight 2) based on
their spatial distribution in the training images. The approach has been used successfully in
detecting objects because of its flexibility in combining different parts of training examples
and its efficiency in detection.

Despite the success of the implicit shape model, it has two drawbacks. First is its dis-
crimination power. Usually a discriminatively learned classifier performs better than a gener-
atively learned one. There have been several works these years that dealt with this issue. The
max-margin Hough transform (M2HT) [22] learns discriminative weights for the codewords
in a maximum margin framework. The Hough forest [13] and discriminative generalized
Hough transform (DGHT) [25] generate a discriminative codebook using the random forest
methods. All of these methods have significantly improved the implicit shape model. How-
ever, they only make discrimination on the codewords (weight 1 or 3 in Figure 1), while the
spatial weights are learned generatively as the spatial distribution of the codewords in posi-
tive training examples (weight 2). The second drawback is that it is difficult to interpret the
scores in the final Hough image, especially after the kernel density estimation, so it is diffi-
cult to tell what function the learning process is optimizing. The principled implicit shape
model [18] reasons the Hough transform in a sliding window manner. From this reasoning,
it derives a generative model, which is similar to the implicit shape model, but avoids the
kernel density estimation and has better interpretation of the Hough image.

In this paper, we propose a novel approach for learning the Hough transform. The ap-
proach puts the whole of the Hough transform into a maximum margin formulation by con-
necting the Hough transform with the SVM through the kernel methods. We design a kernel
particularly for the Hough transform detector and call the kernel "Implicit Shape Kernel".
During training, we use the kernel to train a SVM classifier, which determines the presence
of the object of interest in a subwindow. During testing, we can follow the standard Hough
transform process for the kernel calculations, and the final Hough image will provide the
exact the output scores of the SVM at every location and scale.

2 Approach

2.1 Probabilistic Hough Transform

We start by reviewing the implicit shape model and some other works on the Hough trans-
form based detection. Let f; be a local patch extracted from the input image at location x.

Citation
Citation
{Leibe, Leonardis, and Schiele} 2008

Citation
Citation
{Maji and Malik} 2009

Citation
Citation
{Gall and Lempitsky} 2009

Citation
Citation
{Okada} 2009

Citation
Citation
{Lehmann, Leibe, and van Gool} 2009{}

ZHANG, CHEN: IMPLICIT SHAPE KERNEL 3

Let x; denote the position and scale of an object. By matching it to the codebook, we obtain
a set of codewords C; with probability p(C;|fi,xx). We usually generate codewords based
only on the appearance of the local patch. Therefore, the confidence reduces to p(C;| f¢). For
every C;, we cast weighted votes to the locations and scales of object O. Let V (O, x| fi,xx)
denote the votes collected for a particular location x on the input image from the patch f;.

V(O,x|fx,xi) = ZP(07x|Ciaxk)p(Ci‘fk) = ZP(O|Ci,Xk)P(X|0’Ci,xk)P(Ci|fk))

The first term is the weight specifying the confidence that the codeword C; at location
x; matches the object as opposed to the background. The second term is the probabilistic
Hough vote for the object position given a codeword and its location. This term is obtained
based on the spatial distribution of each codeword on the positive examples. This distribution
is usually obtained by storing all observations of the codeword, and then normalizing to one.
Most studies for the Hough transform differ from each other in terms of how to learn the
weights for the first [22] and third terms [13, 25] in order to discriminate the codewords
from the object of interest and the codewords from the background.

The final score S(O,x) for object O at location x is the summation of the votes collected
from all local patches. In order to allow for small shape deformation, kernel density estima-
tion is usually used to estimate S(O, x).

ZZV (0,x;| fie, xx) K (

X —)CJ

) 2)

we use K, to denote the window function with bandwidth b to differentiate from our designed
kernel which is denoted as K in later sections. A Gaussian function can be used for Gaussian
filtering on the Hough image, and an Epanechnikov function can be used for a Mean-shift
mode search.

2.2 Hough Transform as Kernel Calculation

We reformulate the Hough transform so as to fit it to the kernel classifier. The main idea is to
write the Hough voting score for a location x as a weighted summation of a function K of the
subimage at x and each training example. In this way, we can use the function K as a kernel
to learn a SVM. To simplify the explanation, we consider only the voting for the location of
the object and ignore the scale for now. We explain how to make multi-scale detection in
Section 2.4.

For each codeword C;, we assume that we have its learned weight at each location [
relative to the object center, which we denote as wy, ;. This weight includes both the appear-
ance and spatial weights of the codeword. For the implicit shape model, w;_; is equal to the
product of the spatial distribution of the codeword C; and P(O|C;). For codeword creation,
we match each region to the nearest codeword, that is, p(C;|f;) = 1 when C; is the near-
est cluster for f;, and otherwise 0. Our algorithm can be easily extended to the case that a
patches matches multiple codewords.

The votes for location x; collected from the patch f; would be W=, C(fi)> where x; —
x; is the relative location when x; is the center of the object, and C(fy) is the codeword
assignment of patch f;. Thus the score S(0,x) of object O at location x from equation 2 can
be written as:

x X x Xj
:;wak—xj-,C(fk) j Z Z wa;\ —xj,i w b j) 3)
J

i kC(fi)=C

Citation
Citation
{Maji and Malik} 2009

Citation
Citation
{Gall and Lempitsky} 2009

Citation
Citation
{Okada} 2009

4 ZHANG, CHEN: IMPLICIT SHAPE KERNEL

Positive‘examples Negativ? examples
y ° o ® ° H ‘
w:rd?i "a ;%X =0 *ltay e ety R +...
Wi i Fl%i Fﬁ Flfi

Figure 2: Illustration for the weights of a codeword as a weighted combination of the obser-
vations of training examples

We assume that wy, ; is the weighted summation of the observations from the training
examples as illustrated in Figure 2. Positive examples are the subimages inside the bounding
boxes of objects. Negative examples are sampled from the training images. Let Fl’ d be the
number of occurrence of codeword C; at location [in training example ;. Let o; be the
coefficient for training example /;. The weight wy, ; is calculated as wy, ; =}, O‘fFlk,i-

For the implicit shape model, o = 1/]occ]i]| for all positive examples and 0 for all neg-
ative examples. Here, [i]| denotes the total number of occurrences of codeword C; from
all positive training examples. In our case, ¢ will be learned through SVM, which will be
explained later. Combining with equation 3, we can rewrite the score S(O,x) as:

=Yal Y Yho K(—2))

i kC(fy)=C

Next, we write all locations in the expression as opposed to the same object center x. We
use a new variable x to replace x;, and define xp such that x;» —x = x; — x; as illustrated in
Figure 3.

SO0 = Ya) ¥ Z (*5))

I kC(fi)=C

e X L Ko (F57)] (©)

i kC(fi)=Cik:C(f)=C;

where f}, is the local region of training example /;. Now we define the kernel function
K(I,I;) between two the subimage at location x, I, and the example /; as:

K=Y Y Y K (7)

i kC(fi)=Ci K':C(fir)=Ci

The score S(O,x) for the subimage centered at location x would be S(0,x) =Y. oK (I, I;).
This is exactly the expression of the decision function for subimage I, of a SVM with kernel
K(I.,1;), where o is the coefficient for the ¢/ support vector.

2.3 Implicit Shape Kernel

We define a kernel as in equation 7 for the Hough transform and call this kernel the implicit
shape kernel (ISK). The intuition of this kernel is illustrated in Figure 4. For each pair
of regions from two examples, if they are matched to the same codeword, we calculate
the similarity value of their locations relative to the object centers. The similarity value

ZHANG, CHEN: IMPLICIT SHAPE KERNEL 5

test image

Image 1 Image 2
” ° ® o 00 Yo @k _x.
o K(®o ©)= 78 ek
J k o ’ fe} b
o o oe \

Figure 3: Rewrite Figure 4: The illustration of the proposed kernel. The circles rep-
locations relative to resent local patches. Different colors represent different codeword
the center of a eval- assignments.

uating window X.

is calculated using the window function in the kernel density estimation (Equation 2). The
kernel value of the implicit shape kernel is the summation of the similarities of all such pairs.
This kernel implicitly defines the deformation between the shapes of the two examples. If
the two examples are the same image, the locations of the codewords will match exactly.
Based on the property of the window function K,,, we get the highest similarity value for
each pair of words. As the shape deforms, the value will decrease in a way defined by the
window function.

We consider multiple window functions to reflect the deformation of the shapes. Dif-
ferent functions also define different processes at the runtime of detection with the Hough
transform. Figure 5 shows three types of functions: 1) The uniform function - The Hough
transform spreads the votes uniformly to the neighbors at the third step (Fig. 1). This is
also similar to giving a binned estimation for the spatial weights of the codewords (used in
[22]). 2) The Gaussian function - This corresponds to performing a Gaussian filtering at
the third step (used in [13]); 3) The Epanechnikov function - This corresponds to a standard
Mean-shift local maximum search at the runtime (used in [14, 19]).

Discussion

The proposed kernel provides several good properties: 1) By using the proposed ker-
nel to train a maximum margin classifier (i.e. SVM), we separate the scores of object and
non-object in equation 3 in a maximum margin manner. Thus our method provides full dis-
criminative learning of the Hough transform, including both appearances of the local patches
and their spatial weights. The learning also takes the kernel density estimation into account.
2) During testing, we can apply the standard Hough transform process by recovering wy, ;
with the learned SVM, and use the same window function K,, as that for training. Therefore,
the method benefits from the detection efficiency of the Hough transform. 3) Through the
window function K, the implicit shape kernel avoids hard quantization of the image space
when modeling the spatial information of the codewords, and therefore retains the flexibility
of the implicit shape model [19]. 4) From the derivation in Section 2.2, it is clear that the
scores in the final Hough image (after subtracting the bias term 8 in the SVM) give the exact
decision scores of the classifier for every location of the object in a testing image. Therefore,
we are directly optimizing the classification scores during training.

Mercer’s Condition

Only the kernels that satisfy the Mercer’s condition (positive semi-definite) guarantee a
global optimal solution to kernel based algorithms based on convex optimization, including
SVM. According to [21], for two local feature sets, F, = {fx,, ,fxw} and F, = {f;,, ’fyle\}

of two images I, and I, the following kernel satisfies the Mercer’s condition, if K, (fy;, 5;)

Citation
Citation
{Maji and Malik} 2009

Citation
Citation
{Gall and Lempitsky} 2009

Citation
Citation
{Gu, Lim, Arbelaez, and Malik} 2009

Citation
Citation
{Leibe, Leonardis, and Schiele} 2008

Citation
Citation
{Leibe, Leonardis, and Schiele} 2008

Citation
Citation
{Lyu} 2005

6 ZHANG, CHEN: IMPLICIT SHAPE KERNEL

Uniform ‘ Gaussian Epanechnikov

c x|t

0 otherwise

c(-INF) M=t

0 otherwise

K, (x)= { Kyx)=c- exp(—%"x"z j Ke(x) :{

Figure 5: Different types of window functions for kernel density estimation

is a Mercer’s kernel:
|Fx| |Fy]

K(valy) = Z Z Kw(fxiyfy_/) 3

i=1 j=1

In our case, we represent each local feature as its location (x and y coordinates) on the
image. Let F! and F; be the sets of local features from image I, and I, respectively matched
to codeword C;. Since the summation of multiple Mercer’s kernels is still a Mercer’s kernel,
the kernel defined in equation 7 is a Mercer’s kernel if the window function K,, is a Mercer’s
kernel.

We know that a Gaussian kernel is a Mercer’s kernel. Therefore, the implicit shape kernel
defined using the Gaussian function as the window function is a Mercer’s kernel. Since nei-
ther the uniform function nor Epanechnikov function is a Mercer’s kernel, the implicit shape
kernel with these two functions does not guarantee a global optimal solution for the SVM
learning. However, in practice, a non-Mercer’s kernel usually reports promising empirical
results [26]. This is also seen in our experiments.

2.4 Multi-scale Hough Transform

Training examples are normalized to the same width W and height H. To handle object
detection at multiple scales, we resize the features of a test image and their locations by
a set of scale factors §1,...,8s. Specifically, the size sy of each local feature f is resized
to §;sy for the i scale factor, and the x,y coordinates of its location is resized to $ixy and
§iyr. After that, the Hough transform is performed for each resized image, and detection
scores are obtained at every scale. The bounding box detected at scale s; would have the
size (W /s;,H /s;). During voting, we match a pair of local features from two examples only
when their scales are similar. That is, let the scale of a local feature f; in image I, be s}-’_ , and
a local feature f; in image I, be S}J We calculate a vote only when 1/0 < ST, / s?j < 0. This
will give similar scores as the Hough voting on the 3D space (location and scale).

2.5 Local Normalization

Normalization of the feature histograms for the Hough transform based detectors is not as
straightforward as a sliding window detector because of its additive voting during detection.
In our experiment, we found that a non-normalized detector tends to give higher scores to
larger-scale bounding boxes in multi-scale detection. To deal with this problem, we give a
weight v; to each local feature f;, calculated as v; = 1/ Yycr Ky (™52), where x; denote the
location of the local feature f; , and F is the set of local features in the image. Intuitively,

Citation
Citation
{Ong, Canu, and Smola} 2004

ZHANG, CHEN: IMPLICIT SHAPE KERNEL 7

the weight of each local feature is normalized by the number of features around it. We use
the same window function and bandwidth as for the kernel density estimation. Adding this
weight, the implicit shape kernel of examples I, and /; is defined as:

Kb =Y ¥ ¥ K ©

I k:C(fi)=Ci kK :C(fy)=C;

Obviously this is still a Mercer’s kernel when the window function is positive semi-definite.
This local normalization is also performed during the voting at testing time.

3 Experiment

We evaluate the proposed approach on Pascal VOC [9][8], INRIA horse [11] and UIUC
car [1] datasets. We compare the detection performance favorably to other methods for
learning the Hough transform. In other works, there is usually a verification step after the
Hough transform with some non-linear classifier [22][12]. We would like to compare the
pure Hough transform detectors learned with different methods; therefore, we do not perform
the verification step in the experiments.

During training, negative examples are originally generated as false positives of the im-
plicit shape model. An initial model is learned. Then we apply the model to the training
images and add new false positives to the negative example set. The model is retrained using
the augmented set to produce the final detector. For all datasets, we extract Harris-hessian
regions [23] from gray scale images and use SIFT features [20] to represent the regions. The
codebook is created by clustering the features from training images with K-means. We use
k = 2000 for the Pascal dataset, X = 500 for the INRIA horse and UIUC car datasets. To re-
move multiple detections on the same object, we delete the bounding boxes that are at least
50% covered by another bounding box with a higher confidence score.

3.1 Pascal Datasets

For each category, we learn two models with different aspect ratios for each category by clus-
tering the positive examples into two sets. Thus, we only need to vote for different locations
and scales for each model during detection. We tune the parameter C for the SVM, and the
bandwidth of the window function on the validation dataset for each category respectively.

Bandwidth and different window function

We analyze the impact of different window functions and the bandwidth on the detection
performance. Figure 6 shows the precision-recall curves on the verification data for the car
and cat categories of Pascal 06 dataset. The choice of bandwidth affect the performance as
in many methods with kernel density estimation [5]. For the car category, a relatively small
bandwidth is preferred. However, when the bandwidth is too small, the performance is not
good either, since we lose the generality of the model. The same effect is also observed for
other categories with rigid shapes. On the other hand, for the cat category, whose shape is
loose, a larger bandwidth leads to better detection performance. With the same bandwidth,
the Gaussian function and the Epanechnikov function performs much better than the uni-
form function on the car category. For the cat category, the three functions lead to similar
performance, with the Gaussian function slightly better than the others.

Comparison with other Hough transform methods

Citation
Citation
{Everingham, Zisserman, Williams, and Vanprotect unhbox voidb@x penalty @M {}Gool}

Citation
Citation
{Everingham, Vanprotect unhbox voidb@x penalty @M {}Gool, Williams, Winn, and Zisserman}

Citation
Citation
{Ferrari, Fevrier, Jurie, and Schmid} 2008

Citation
Citation
{Agarwal, Awan, and Roth} 2004

Citation
Citation
{Maji and Malik} 2009

Citation
Citation
{Fritz, Leibe, Caputo, and Schiele} 2005

Citation
Citation
{Mikolajczyk and Schmid} 2005

Citation
Citation
{Lowe} 2004

Citation
Citation
{Comaniciu, Meer, and Member} 2002

8 ZHANG, CHEN: IMPLICIT SHAPE KERNEL

L ' ==
% ——— G [b= 5/25 width] AP = 0.200
08 \;\\) 08 ——— G [b= 7/25 width] AP = 0.209
\ G [b= 9/25 width] AP = 0.231
\1 v G [b=15/25 width] AP= 0.257
0.6
0.4

o
o

precision
precision

o
IS

—— G [b=1/25 width] AP=0.434
— G [b=3/25 width] AP=0.454

| — G [b=5/25 width] AP=0.454

0 0.1 0.2 0.3 0.4 0.5 0.6

G [b=7/25 width] AP=0.425
% 01 0z 03 04 05 0.6 recall
recall
(a) car (Gaussian) (b) cat (Gaussian)
1 . e 1
L‘“\k Gaussian AP=0.257
08 \ 08 Epanechnikov AP=0.249
Uniform AP =0.243
5 06 i 5 06
o4 € os
— Gaussian AP=0.454
0.2 Epanechnikov AP=0.453] 0.2
Uniform AP=0.308 3
0 L L L ‘7\\ 0 X X X X X TN
0 0.1 0.2 03 0.4 05 0.6 0 0.1 0.2 0.3 0.4 05 0.6
recall recall
(c) car (b=7/25width) (d) cat (b=15/25width)

Figure 6: Precision-Recall curves on the Pascal 06 dataset. (a) and (b) are the detection
results for car and cat categories with different bandwidth. The bandwidth is specified as
the ratio of the width of the model. The Gaussian function is used here. (c) and (d) are the
results with different window functions.

Table 1: Average Precisions (%) on Pascal VOC 2006 dataset using the Hough transform
detectors learned with different methods

bike bus car cat Cow dog horse | mbike | person | sheep
ISM[19] 35.6 1.8 122.4 4.0 2.7 2.9 1.6 5.1 1.4 1.8
MZHT[22] 43.9 7.7 | 24.3 12.6 16. 0 3.2 1.8 11.9 5.3 12. 2
ISM+norm | 41.4 5.6 | 32.6 3.6 15.5 3.9 4.0 16.9 2.9 13.3
M*HT+norm | 45.6 | 18.2 | 25.3 13.0 16. 5 6.4 | 12.7 21. 1 11.6 14.9
Ours 53.6 [29.3 | 45.1 25. 6 26.7 | 18.5 | 20.9 41.7 12.4 26.5

Table 1 shows the average precisions for each category on the test data of Pascal 06
dataset. We implemented the implicit shape model (ISM) and the max-margin Hough trans-
form (M2HT) by ourselves. To make a fair comparison, we keep everything the same except
the learning algorithm for each model. We also present the results of ISM and M2HT with
local normalization with the method described in Section 2.5.

According to the table, making discriminative learning for the weights of codewords with
MP?HT leads to higher AP scores than ISM. Performing local normalization consistently im-
proves both ISM and M>HT. Learning the Hough transform with our approach further
outperforms M>HT with local normalization on all the categories. This shows that making
discriminative learning on the locations of the codewords significantly improves the detec-
tion performance of the Hough transform that is only learned with per-word discriminative
weights.

Comparison with non Hough transform methods

It would be interesting to compare the Hough transform detector with some related slid-
ing window methods. A SVM with the proposed implicit shape kernel (ISK) is in many ways
similar to a linear SVM with the spatial pyramid kernel, except that the ISK does not do hard

ZHANG, CHEN: IMPLICIT SHAPE KERNEL 9

Table 2: Comparison of Average Precision (%) on Pascal VOC 2007 dataset using our
method and related non Hough transform methods

plane bike bird boat | bottle bus car cat | chair| cow
Ours 24,6 32,1 5.0 9.7 9.2 23.3 | 29.1 11.3 9.1110.9
Linear SPK[15] 16.9 21.2 4.9 4.8 7.3 25.2 28.4 6.9 9.8 | 10.3
Linear BoW[16] 15.2 15.7 9.8 1.6 0.1 18.6 12.0 1 24.0 0.7 6.1
table dog horse motor | person | plant | sheep | sofa | train tv
Ours 8.1 13.0 31.8 29.5 16. 6 6.1 7.3 | 11.8 [22.6 | 21.9
Linear SPK[15] 6.7 6.9 30.5 26. 6 13.1 9.4 12.5 12.1 | 17.0 | 28.5
Linear BoW[16] 9.8 16.2 3.4 20.8 11.7 0.2 4.6 | 14.7 | 11.0 5.4
0.9 Methods EER
08 Ours 99, 5%
0.7
06 ISM [19] 91. 0%
= 05 ISM+verification [19] 97. 5%
g 04 —IsM WHT+verification [22] 97. 5%
03 et Hough Forest [13] 98. 5%
gi = = = M2HT+verification| DGHT [25] 98. 5%
o Mutch & Lowe [24] 99. 6%
0 0.2 0.4 06 08 1 ESS [16] 98. 5%
FPPI
(a) INRIA horse (b) UIUC car

Figure 7: (a) Precison-recall curves for the INRIA horse dataset, we show the results of
M?HT implemented by ourselves, and the curve reported in [22] for the M?HT with a non-
linear SVM for verification. At 1.0 false positive per image, the recall of our approach
is 89.20%, and recall for M?HT + verification is 85.27%. (b) The equal error rates on
the UIUC car dataset with both the Hough transform methods, and non-Hough transform
methods [24][16]

quantization on the image space. With a large bandwidth for the window function, the ISK
is also similar to the bag of words model. On the Pascal 07 dataset, we compare the AP
scores of the Hough transform learned with our method with the sliding window approach
with linear spatial pyramid kernel [15] and the efficient subwindow search method with bag
of words [16]. We outperform the linear SVM with SPK and bag of words on most of the
categories. In [15], a non-linear SVM with x? kernel which is much slower for evaluation is
used to verify the candidates generated by the linear SVM, which produces better AP scores
(also than our approach). It is noteworthy that the Hough transform detector is designed
mainly for a fast detection. The same verification classifier in [15] can be used after the
Hough transform but with more accurate candidates, which are extracted even faster than the
linear SVM with SPK.

Computation time

On a server with 8 core 2.26GHz CPU, the detection on all scales takes 100ms to 200ms
per image depending on different categories.

3.2 INRIA horse and UIUC car

To directly compare with the performance reported on the papers of other Hough transform
methods, we did experiments on some of the datasets used by those papers. We use the same
experiment setting with M?HT [22] for the INRIA horse dataset, and the same experiment
setting as [1] for the UTUC car dataset (single-scale). Figure 7 (a) shows the recall-fppi (false

Citation
Citation
{Maji and Malik} 2009

Citation
Citation
{Mutch and Lowe} 2006

Citation
Citation
{Lampert, Blaschko, and Hofmann} 2008

Citation
Citation
{Harzallah, Jurie, and Schmid} 2009

Citation
Citation
{Lampert, Blaschko, and Hofmann} 2008

Citation
Citation
{Harzallah, Jurie, and Schmid} 2009

Citation
Citation
{Harzallah, Jurie, and Schmid} 2009

Citation
Citation
{Maji and Malik} 2009

Citation
Citation
{Agarwal, Awan, and Roth} 2004

10 ZHANG, CHEN: IMPLICIT SHAPE KERNEL

positive per image) curve comparing to the M>?HT implemented by ourselves and the curve
reported in [22] for M 2HT with a non linear SVM for verification. The results verified that
making spatial discrimination of the codewords improves the Hough transform detector.

4 Conclusion

We proposed an approach that enables maximum margin learning for both appearances and
locations of the codewords for the Hough transform detector. We designed a kernel in the
way that the Hough transform can be used to obtain the scores of the SVM classifier learned
with this kernel. The Hough transform detector learned with our approach leads to better
performance than the ones learned with previous methods. For the future work, we are
interested in learning of the bandwidth in the window function automatically from training
data. Moreover, we would like to explore other types of kernels that can be evaluated with
the Hough transform.

References

[1] Shivani Agarwal, Aatif Awan, and Dan Roth. Learning to detect objects in images via a
sparse, part-based representation. IEEE Transaction on Pattern Analysis and Machine
Intelligence, 26:1475-1490, 2004.

[2] Mykhaylo Andriluka, Stefan Roth, and Bernt Schiele. People-tracking-by-detection
and people-detection-by-tracking. In CVPR, 2008.

[3] Matthew B. Blaschko and Christoph H. Lampert. Learning to localize objects with
structured output regression. In ECCV, 2008.

[4] Ondrej Chum and Andrew Zisserman. An exemplar model for learning object classes.
In CVPR, 2007.

[5] Dorin Comaniciu, Peter Meer, and Senior Member. Mean shift: A robust approach
toward feature space analysis. [EEE Transactions on Pattern Analysis and Machine
Intelligence, 24:603-619, 2002.

[6] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
In CVPR, 2005.

[7] Chaitanya Desai, Deva Ramanan, and Charless Fowlkes. Discriminative models for
multi-class object layout. In ICCV, 2009.

[8] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PAS-
CAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html, .

[91 M. Everingham, A. Zisserman, C. K. I. Williams, and L. Van Gool. The PAS-
CAL Visual Object Classes Challenge 2006 (VOC2006) Results. http://www.pascal-
network.org/challenges/VOC/voc2006/results.pdf, .

[10] Pedro Felzenszwalb, David McAllester, and Deva Ramanan. A discriminatively
trained, multiscale, deformable part model. In CVPR, 2008.

Citation
Citation
{Maji and Malik} 2009

ZHANG, CHEN: IMPLICIT SHAPE KERNEL 11

[11] Vittorio Ferrari, Loic Fevrier, Frederic Jurie, and Cordelia Schmid. Groups of adjacent
contour segments for object detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 30(1):36-51, 2008.

[12] Mario Fritz, Bastian Leibe, Barbara Caputo, and Bernt Schiele. Integrating representa-
tive and discriminant models for object category detection. In ICCV, 2005.

[13] Juergen Gall and Victor Lempitsky. Class-specific hough forests for object detection.
In CVPR, 20009.

[14] Chunhui Gu, Joseph J. Lim, Pablo Arbelaez, and Jitendra Malik. Recognition using
regions. In CVPR, 2009.

[15] Hedi Harzallah, Frederic Jurie, and Cordelia Schmid. Combining efficient object lo-
calization and image classification. In /CCV, 2009.

[16] Christoph H. Lampert, Matthew B. Blaschko, and Thomas Hofmann. Beyond sliding
windows: Object localization by efficient subwindow search. In CVPR, 2008.

[17] Alain Lehmann, Bastian Leibe, and Luc van Gool. Feature-centric efficient subwindow
search. In ICCV, 2009.

[18] Alain Lehmann, Bastian Leibe, and Luc van Gool. Prism: Principled implicit shape
model. In BMVC, 2009.

[19] Bastian Leibe, Ale§ Leonardis, and Bernt Schiele. Robust object detection with inter-

leaved categorization and segmentation. International Journal of Computer Vision, 77
(1-3):259-289, 2008.

[20] David G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60:91-110, 2004.

[21] Siwei Lyu. Mercer kernels for object recognition with local features. In CVPR, 2005.

[22] Subhransu Maji and Jitendra Malik. Object detection using a max-margin hough trans-
form. In CVPR, 20009.

[23] Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation of local de-
scriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10):
1615-1630, 2005.

[24] Jim Mutch and David G. Lowe. Multiclass object recognition with sparse, localized
features. In CVPR, 2006.

[25] Ryuzo Okada. Discriminative generalized hough transform for object detection. In
ICCV, 2000.

[26] Cheng Soon Ong, Stephane Canu, and Alexander J. Smola. Learning with non-positive
kernels. In ICML, 2004.

