Implicit Shape Kernel for Discriminative Learning of the Hough Transform Detector
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The sliding window approach has been widely used for object detection
because it provides a simple way to apply object recognition techniques to
the detection task. Despite its effectiveness, though, the exhaustive search
makes the approach inefficient in the case of a non-trivial classifier. The
branch and bound techniques [3, 4] have been proposed in recent years to
avoid the exhaustive search and still find the global optimal.

The Hough transform [1, 2, 5, 6, 7, 8] provides an alternative way to
perform the detection task in a much more efficient manner. The Hough
transform based detector has three main steps, as illustrated in Figure 1:
1) Each local patch in a test image is assigned to a codeword. 2) Ac-
cording to the spatial information of the codebook learned from the train-
ing images, each patch will cast weighted votes to the object locations
and scales, and obtain the initial Hough image. 3) In order to tolerate
shape deformation, kernel density estimation, such as Gaussian filtering
or Mean-shift modes estimation is applied to the Hough image. This pro-
cess gives us the final Hough image, and the peaks in the Hough image
are extracted as the detection hypotheses. Figure 1 also shows the three
weights we need to learn. The implicit shape model [6] puts the Hough
transform into a probabilistic formulation by learning the locations of the
codewords (weight 2) based on their spatial distribution in the training
images.

Despite the success of the implicit shape model, it has two drawbacks.
First is its discrimination power. There have been several works these
years [2, 7, 8] that dealt with this issue. All of these methods have sig-
nificantly improved the implicit shape model. However, they only make
discrimination on the codewords (weight 1 or 3 in Figure 1), while the
spatial weights are learned generatively as the spatial distribution of the
codewords in positive training examples (weight 2). The second draw-
back is that it is difficult to interpret the scores in the final Hough image,
especially after the kernel density estimation, so it is difficult to tell what
function the learning process is optimizing.

In this paper, we propose a novel approach for learning the Hough
transform. The approach puts the whole of the Hough transform into a
maximum margin formulation by connecting the Hough transform with
the SVM through the kernel methods. We design a kernel particularly
for the Hough transform detector and call the kernel "Implicit Shape Ker-
nel". During training, we use the kernel to train a SVM classifier, which
determines the presence of the object of interest in a subwindow. Dur-
ing testing, we can follow the standard Hough transform process for the
kernel calculations, and the final Hough image will provide the exact the
output scores of the SVM at every location and scale.

We briefly describe the implicit shape kernel. The kernel is illustrated
in Figure 2. For each pair of regions from two examples, if they are
matched to the same codeword, we calculate the similarity value of their
locations relative to the object centers. The similarity value is calculated
using the window function K,, in the kernel density estimation . The
window function can be either a Gaussian function or an Epanechnikov
function. Different functions also define different processes at the runtime
of detection with the Hough transform. The kernel value K of the implicit
shape kernel is the summation of the similarities of all such pairs. Let /
denote an image, C; denote a codeword entry, C(f;) denote the codeword
assignment of feature f, and x; denote the location of the feature.
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where b is the bandwidth of the window function. This kernel captures the
deformation between the shapes of the two examples. If the two examples
are the same image, the locations of the codewords will match exactly.
Based on the property of the window function K,,, we get the highest
similarity value for each pair of words. As the shape deforms, the value
will decrease in a way defined by the window function.

The proposed kernel provides several good properties: 1) During test-
ing, we can apply the standard Hough transform process to obtain the
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Figure 1: The illustration for the Hough transform. The three steps for
testing an image are indexed with red circles. The three weights we need
to learn are indexed with green circles.

Image 1 Image 2
4] e o 0y Y9 O
K( ® ® - 2 K (,kixk‘)
’ “*1'b
° ® o o oe \

Figure 2: The illustration of the proposed kernel. The circles represent
local patches. Different colors represent different codeword assignments.

decision scores of the learned SVM for the subwindows by transferring
the coefficients of the support vectors to the weights used for the Hough
transform. The detailed implementation is described in the paper. we
show that the scores in the final Hough image give the exact decision
scores of the classifier for every location of the object in a testing image.
Therefore, the method benefits from the detection efficiency of the Hough
transform. Moreover, we are directly optimizing the classification scores
during training. 2) By using the proposed kernel to train a maximum mar-
gin classifier (i.e. SVM), our method provides full discriminative learning
of the Hough transform, including both appearances of the local patches
and their spatial weights. The learning also takes the kernel density es-
timation into account. 3) Through the window function K,,, the implicit
shape kernel avoids hard quantization of the image space when modeling
the spatial information of the codewords, and therefore retains the flexi-
bility of the implicit shape model [6].

We evaluate the proposed approach on Pascal VOC 2006 and 2007
datasets, INRIA horse and UIUC car datasets.The experiment results show
that our approach significantly improves the detection performance over
previous methods of learning the Hough transform.
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