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Abstract
The mean-shift algorithm is a robust and easy method of finding local extrema in

the density distribution of a data set. It has been used successfully for visual tracking
in which the target is modelled using a colour histogram, and the image window with
best matching histogram is sought. However a histogram is potentially a poor estimate
of the underlying colour distribution: it is not invariant to the image scale, the number
of histogram bins or the number of samples, and this can have an adverse affect on the
speed and accuracy of convergence of the mean-shift algorithm.

We apply a general non-parametric PDF estimation method [7] to replace the his-
togram in mean-shift tracking to improve its accuracy. This algorithm uses an interpo-
lation scheme which fits piecewise functions to the signal samples, calculating the PDF
by accumulating the contribution of each piecewise function. Its accuracy is dependent
only on the accuracy of the piecewise representation, not the number of samples or the
number of bins. Experiments are conducted to demonstrate that we improve mean-shift
visual tracking both in accuracy and speed.

1 Introduction
Mean-shift is a popular mode-finding algorithm applied to various aspects of computer vi-
sion. In arguably the most compelling application of the algorithm, [4] showed how it can
be used for fast effective visual tracking of coloured blobs; here a local maximum of a sim-
ilarity measure between two colour distributions (PDFs) is sought. The estimation of these
colour distributions in mean-shift visual tracking is essential since the goodness of conver-
gence largely depends on them, and so if the accuracy of the distribution estimation can be
improved, the tracking performance will also potentially improve, and we would reduce the
risk of losing the target from accumulation of bias.

In the standard mean shift algorithm, the simplest non-parametric representation, namely
a histogram, is used as the estimate of the colour probability distribution for both the target
and candidate window. It satisfies the low computational cost imposed by real-time pro-
cessing. However, it is potentially an impoverished representation, being neither invariant
to the image scale, the number of histogram bins nor the number of samples. An alternative
non-parametric PDF estimate algorithm is Parzen windowing, which avoids arbitrary bin as-
signments and leads to smoother PDFs. However, a suitable kernel shape and size must be
chosen, not always a trivial task.
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Kadir and Brady [7] noted that, when forming the distribution of a sampled signal (such
as an image), two important properties of signals can be used to improve the PDF estimate:
first, the samples are ordered; second, if the sampling rate was sufficiently high, then the
samples contain all the information required to reconstruct the original continuous (band-
limited) signal exactly. Using these facts they proposed general non-parametric technique
for accurate and stable PDF estimation, which calculates the PDF of neighbouring samples
directly in closed-form to accumulate the full PDF of the signal.

The key contribution of our paper is to use Kadir’s non-parametric windows method to
replace the histogram for estimating the colour probabilities in mean-shift visual tracking.
We show, in particular, that this leads to faster and more accurate convergence, and by mak-
ing use of a (separable) Gaussian kernel rather than the more usual Epanechnikov kernel,
that the actual run-time can be reduced as well.

2 Non-parametric (NP) Windows for PDF Estimation
Accumulating a histogram is a standard and expedient method to obtain an estimate of the
probability density from which a data set was generated. The NP-Windows algorithm, de-
veloped by Kadir and Brady in [7], is a method for estimating the underlying probability
density of a signal which is more accurate than a histogram for a particular class of data
set, namely samples from a band-limited signal. It was inspired by the observation that up-
sampling of a signal can be used to deal with an impoverishment of samples from which
to generate a histogram, since the upsampled signal has many more samples. Kadir et al.
noted that for band-limited signals which have been critically sampled (i.e., at faster than
the Nyquist rate), upsampling can be achieved to arbitrary accuracy, and that therefore, for
this class of data-set, the estimation of the underlying probability density of the data could
be much more accurate than could be achieved by treating each data point as an independent
sample and accumulating a histogram.

In this section, we briefly recap Kadir’s NP-windows method. In this method, the original
signal is not directly upsampled using interpolation; rather since the final goal is to estimate
the PDF, the re-sampling step is avoided, and the PDF is instead calculated directly in closed-
form by considering the analytic contributions from each pair of neighbouring samples (or
in 2D, each 4-connected neighbourhood). The main process consists of three main steps:
first, between each pair of neighbouring samples (xi,yi) and (x′i,y

′
i), the coefficients of a

polynomial interpolation (y = Y (x)) are calculated; second, the PDF of y, py(·) is calculated
analytically by transforming a uniform distribution on x through the transformation Y (x);
finally, bins at an arbitrary precision are populated from the py(·) for each pair of samples in
order to generate the PDF for the whole target region. Although the last step generates the
PDF by populating bins, the accuracy of this depends only on the accuracy of the piecewise
representation, not the number of samples nor the number of bins.

The signals we are dealing with are images, and we use bilinear interpolations. Kadir et
al. showed that it is necessary to introduce a dummy variable to compute the contribution
of a bilinearly interpolated 4-neighbourhood (which is subsequently marginalised out). The
limits of this integration involve a number of special cases: Kadir et al. noted 24 (calculated
as 4!) such cases, and we refer the reader to their papers [7, 8] rather than reproduce that
detail here.

By way of example, Figure 1 shows the performance of different PDF estimators for
real images; the middle one is standard histogram and the right one is generated from NP-
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(a) (b) (c)
Figure 1: The ground truth of PDF estimate on a real image (left), the histograms from stan-
dard method (middle) and NP-Windows model (right). Note the zero bins in the histogram
on the middle graph.

windows on the same image. On the left, it is the ground truth by histogramming an in-
terpolated version of the image using a FIR interpolator. Note, in particular the numerous
bins with zero probability in the standard histogram on the middle, which compromise the
accuracy of the representation of the underlying colour distribution.

3 Speeding the Convergence of Mean Shift
The mean-shift vector can be generally derived as the normalised density gradient estimate
in [6] and also discussed in [3]:

m(x) =
h2cg

2ck

∇FK(x)
FG(x)

(1)

Here, FK(x) is the kernel density estimate obtained with kernel K(x) and window radius h;
∇FK(x) is the gradient of the kernel density estimate which is (by associativity of the grad
operator and the kernel) is also the estimate of the density gradient; FG(x) is the density
estimate at x computed with the kernel G, where G is determined as follows. The profile of
kernel K, k(x), is defined by the equation

K(x) = ckk(‖x‖2),

G is then defined as the kernel having profile g(x) =−k′(x); that is

G(x) = cgg(‖x‖2)

where ck and cg are the corresponding normalisation constants. K(·) is called the shadow
of G(·). For the Epanechnikov kernel, it is the shadow of the uniform kernel, while the
Gaussian kernel and its shadow have the same expression.

Comaniciu’s original work in [4] made use of an Epanechnikov kernel K because of its
optimality to minimise the average global error between the estimate and the true density, and
its computational efficiency since the kernel evaluations involve only pairs of neighbouring
points within distance smaller than the bandwidth rather than all pairs of points. Moreover,
it leads to a particularly simple and beautiful form for the mean shift vector (because the
magnitude of its derivative is one, so G collapses). When applying the Epanechnikov kernel,
convergence is achieved in a finite number of iterations owing to its finite support.

Nevertheless, subsequent work [2] has demonstrated that the use of a Gaussian kernel can
have better performance than the Epanechnikov kernel. In particular, use of the Gaussian ker-
nel can decrease the number of iterations required for convergence (providing a lower bound
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for the magnitude of the mean shift vector is set), since the kernel G imposes a weighting on
the data points according to the distance from its center. Furthermore, since the Gaussian ker-
nel is separable, there are computational gains in using it in preference to the Epanechnikov
kernel; viz, the 2D kernel density estimate can be computed efficiently using two independent
1D Gaussian symmetrical masks, one in the x direction and one in the y direction.

The computational gains of this approach are not immediately obvious when considering
convergence of the standard mean shift, because there, each iteration is almost trivial, so
performing a few less iterations doesn’t have a measurable effect on the total run time of the
optimisation. However, in our case, each iteration requires calculation of the histogram using
NP-Windows, which introduces considerable additional computational effort per iteration.
We find, therefore, significant gains in using the separable Gaussian in preference to the
Epanechnikov kernel, as well as improved accuracy (see Section 5).

Much has been written [1, 5] about the importance of bandwidth selection within mean-
shift. We have previously presented a hybrid tracking approach in which we measure the
change in scale of a target using affine structure [9]. In the present work we use the output of
this calculation to set the bandwidth of the kernels; i.e., we set the bandwidth of the kernels
to match the target scale as computed using affine structure.

4 Algorithm Description
Our modified algorithm for mean-shift tracking is summarised as follows: Given the ini-
tialised location of the target y0, using the NP-windows to estimate the distribution {qu}u=1...m
of the target model on the very first frame, then:

1. Initialise the location of the target in the current frame with y0, compute the distribu-
tion {pu(y0)}u=1...m using NP-windows method in section 2:

pu(y0) = Ch

n

∑
i=1

fi(u)

where Ch is the normalization constant, n is the number of the four 2×2 neighbouring
pixel squares, fi(·) is the PDF estimate of the ith square. Then evaluate the Bhat-
tacharyya coefficient ρ0.

2. Calculate the weights {ω(xi)}i=1...n as derived in [4].

3. Using a 2D Gaussian kernel to estimate the mean-shift vector, derive the new location
of the target, according to the method mentioned in section 3:

y1 =
h2

2
∑

n
i=1 ω(xi)xig(‖ x−xi

h ‖
2)

∑
n
i=1 ω(xi)g(‖ x−xi

h ‖2)

4. Update {pu(y1)}u=1...m, and evaluate the Bhattacharyya coefficient ρ1.

5. While ρ1 < ρ0 Do y1← 1
2 (y0 +y1).

6. If ‖y1−y0‖< ε Stop. Otherwise, set y0← y1 and go to Step 1.
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Figure 2: Translation estimate errors on sine function for a true displacement of 2π/5.

Figure 3: Translation estimate errors (in pixels) on a synthetic image; ground-truth displace-
ments are 7 in x-axis and -9 in y-axis.

5 Experiments and Results

We applied our model on 1D signals, 2D synthetic images, 2D real images as well as se-
quences. In all the cases we employ a 256 bin histogram. The first experiment compares the
accuracy for four models: mean-shift with Epanechnikov kernel (we refer to this hereafter
as “standard mean-shift”), mean-shift with Gaussian kernel, mean-shift with NP-windows
and mean-shift with both NP-windows and Gaussian kernel. The objective is to estimate the
displacement of the shifted signals from the original signals. The 1D signals are one period
of the sine function, 127.5sin(x + φ)+ 127.5, on which we choose 50 samples, a synthetic
image and a real image, using four different models of mean-shift. The displacement is 2π/5
for the sine function and ∆x = 7,∆y =−9 for the synthetic image, while for the real image,
the displacement in x direction is 15 and 20 in y direction. The accuracies are calculated by
evaluating the fixation error between the measurement and the ground truth location.

The computation time for the four models running on the sine signal were 22ms, 20ms,
48ms and 22ms respectively, thus with only NP-windows the computation time is about
twice of the standard mean-shift, (though the number of iterations is half of the standard
mean-shift), but with Gaussian kernel, the time is decreased so that it is comparable to the
original mean-shift. Figure 2 shows the result of all four models on the sine function; the
x axis is the iteration number, and the y axis is the accuracy measured by calculating the
distance between the zero shifted signal and that resulting from the translated signal for each
method at every iteration. Figure 3 and Figure 4 show the results on a simple black-and-
white synthetic image and on a real image respectively. All three figures demonstrate that
mean-shift with Gaussian kernel and NP-windows yields the best accuracy with the fewest
iterations.

Next we examine the performance of the proposed technique for video sequences as fol-
lows. Two sequences are filmed at 15 fps, and each is 640× 480 pixels resolution. We
measure the accuracy by calculating the distance in pixels between the ground truth (hand-
labelled) and resulting position estimated from the four methods, normalised by the target
scale (i.e., the error quoted is the pixel error divided by half the target size). Speed is mea-
sured both in the absolute computation time and numbers of iterations for the mean-shift
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Figure 4: Translation estimate errors (in pixels) on real image, displacements are 15 in x-axis
and 20 in y-axis.

(a)Tracking results at frame 65 (b)Normalized pixel error

(c)Tracking results at frame 193 (d)Running time
Figure 5: Tracking results of lobby sequence at frame 65 (a) and 193 (c): standard MS(left)
MS with Gaussian kernel and NP-windows(right); (b) shows normalized pixel error: red
dashed line is MS and blue real line represents MS with Gaussian kernel and NP-windows.

process. Table 1 gives the numerical results, showing the average error, running time and
number of iterations for the different models. Figure 7 shows the results for the person
sequence and Figure 8 for the vehicle sequence.

Standard mean-shift tracking is notoriously poor at dealing with changes in target scale.
In order to prevent scale changes biasing the results for the different methods, we use the
technique described in [9] to precompute the scale using affine structure. This scale sets the
window size and kernel bandwidth for each frame of each sequence, and these same values
are used when running each algorithm.

We also compared our combined model with standard mean-shift using the dataset from
the standard “CAVIAR” surveillance video dataset (http://homepages.inf.ed.ac.uk/rbf/
CAVIAR/). Figure 5(a) and (c) shows tracking results on a sequence of a person walking
taken by a wide angle lens in a lobby. The left subfigures in Figure 5(a) and (c) are from
standard mean-shift, while the right subfigures are from mean-shift with both NP-windows
and Gaussian kernel. The normalized pixel error (compared to the ground truth) and running
time are showed in Figure 5(b) and (d) respectively. More results in Figure 6 demonstrate
using these two methods to track a person walking in a group in a shopping center sequence.
Like as Figure 5, Figure 6 (a) and (b) shows tracking results from both models. Normalized
pixel error is in Figure 6 (c) and running time is in Figure 5(d).

For the above cases, in the large majority of frames, the model with NP-windows and
Gaussian kernel has the lowest fixation error, runs in the fewest iterations and in the least
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(a)Tracking results at frame 150 (b)Normalized pixel error

(c)Tracking results at frame 350 (d)Running time
Figure 6: Tracking results of shopping center sequence at frame 150 (a) and 350 (c): stan-
dard MS(left) MS with Gaussian kernel and NP-windows(right); (b) shows normalized pixel
error: red dashed line is MS and blue real line represents MS with Gaussian kernel and
NP-windows.

time.

Table 1: Average results on normalised pixel error, the number of iterations, and running
time (in milliseconds) for standard MS, MS with Gaussian kernel, MS with NP-windows
density estimate and MS with both.

(a) Results on person sequence

Algorithm Error Iteration Time
MS+Epanechnikov 0.0885 4.2100 33.4857

MS+Gaussian kernel 0.0871 1.9650 22.5025
MS+NP Windows 0.0421 2.5000 40.2398

MS+Gaussian kernel+NP Windows 0.0419 1.8900 12.4759

(b) Results on vehicle sequence

Algorithm Error Iteration Time
MS+Epanechnikov kernel 0.0748 3.9520 29.9621

MS+Gaussian kernel 0.0789 1.4040 10.9280
MS+NP Windows 0.0341 1.6800 10.6157

MS+Gaussian kernel+NP Windows 0.0356 1.3320 8.7649

6 Conclusion
We have presented a method for improving the accuracy as well as the convergence speed of
mean-shift visual tracking process, through use of a better approximation of the underlying
colour distribution. Though direct application of NP-windows to mean-shift tracking does
increase the computational time required, we have further shown that use of the 2D Gaussian
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(a) Sample images from the person sequence, on Frame 3, 115 and 126.

(b) Normalised pixel error for each tracking model.

(c) Running time (in ms) of each tracking model.

(d) The number of iterations per frame for each tracking model.

Figure 7: Tracking results on person sequence of four models: standard MS, MS with Gaus-
sian kernel, MS with NP-windows and MS with Gaussian kernel and NP-windows.
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(a) Sample images from vehicle sequence, on Frame 1, 57, 128 and 200.

(b) Normalised pixel error for each tracking model.

(c) Running time (in ms) of each tracking model.

(d) The number of iterations per frame for each tracking model.

Figure 8: Tracking results on vehicle sequence of four models: standard MS, MS with Gaus-
sian kernel, MS with NP-windows and MS with Gaussian kernel and NP-windows.
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kernel into separable 1D masks can compensate by reducing the run-time to compute the
mean shift vector.

In considering the reasons for the improved performance, we first note that NP-windows
effectively uses the available subpixel information; the colour distribution in NP-windows is
not only calculated from individual pixels, but from the contributions of their neighbouring
pixels and their relationships. Moreover, compared to the standard histogram, NP-windows
is invariant to the bin and template size, so that scale changes of a target have less effect on
the quality of the colour distribution estimate than when using standard counting to build
a histogram. Finally, the convergence of Mean-Shift is based on the distance of the two
distributions (template and candidate). Since the density estimation from NP-windows is
much closer to the ground truth than a standard histogram, the optimisation is comparing
two better approximations of the underlying distribution and so is more likely to converge to
the correct result.

As noted in Kadir’s original work, NP-windows is a general technique that applies when-
ever a histogram is being constructed from a signal. The widespread use of this operation in
visual tracking means that the technique could be applied, not only in mean-shift tracking,
but in any other method for visual tracking that involves building a histogram colour model,
with likely improvement in accuracy and robustness.
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