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Abstract

This paper proposes a stochastic optimization framework for unsupervised learning
of a hierarchical vocabulary of object shape intended for object class detection. We build
on the approach by [6], which has two drawbacks: 1.) learning is performed strictly
bottom-up; and 2.) the selection of vocabulary shapes is done solely on their frequency
of appearance. This makes the method prone to overfitting of certain parts of object
shape while losing the more discriminative shape information. The idea of this paper is
to cast the vocabulary learning into an optimization framework that iteratively improves
the hierarchy as a whole. Optimization is two-fold: one that learns and selects the vocab-
ulary of shapes at each layer in a bottom-up phase and the other that extends/improves
it by top-down feedback from the higher layers. The algorithm then loops between the
two learning stages several times. We have evaluated the proposed learning approach for
object class detection on 11 diverse object classes taken from the standard recognition
data sets. Compared to the original approach [6], we obtain a 3 times more compact
vocabulary, a 2.5 times faster inference, and a 10% higher detection performance at the
expense of 5 times longer training time (25min vs Smin). The approach attains a com-
petitive detection performance with respect to the current state-of-the-art at both, faster
inference as well as shorter training times.

1 Introduction

Approaches that learn visual codebooks of appearance [3, 12, 25] and/or shape [4, 19, 23],
and combine them with simple object geometry have been shown to give the most successful
performance for object class detection to date. Most of these works, however, use flat visual
vocabularies where each object is represented as an immediate aggregate of intermediately
complex codebook features. Recently, hierarchical approaches have demonstrated appealing
computational and qualitative advantages [2, 6, 18, 26]. Hierarchical vocabularies incor-
porate structural dependencies among the codebook entries at multiple levels: objects are
defined in terms of a collection of parts, which are further composed from a set of simpler
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constituents, etc. This 1.) increases the reliability of detections, and 2.) reduces inference
time because the features are not only shared among the distinct classes, but are also shared
among the features themselves — at multiple layers of the representation.

Learning a hierarchical visual vocabulary in a bottom-up and unsupervised manner faces
several difficult issues. In the bottom-up approach, the codebook features at each layer are
formed by combining the features from the layer below. Since no supervision is assumed
to point to the object relevant combinations, we must induce the structure from the data
itself. In the process of learning we thus deal with a very large number of potential feature
aggregations, which can quickly result in a combinatorial explosion already at the early
stages of the hierarchical vocabulary construction [22]. Furthermore, the set of features the
algorithm learns at each layer directly influences the expressiveness of the layers that work
on top of them. If a more discriminative, less frequent, feature is missed in the learning
process, we may get poor models for the object classes.

This paper builds upon the approach by Fidler and Leonardis [6] which recursively learns
a hierarchical vocabulary of object shape. The representation is compositional, i.e., each
shape in the vocabulary is composed out of simpler ones by means of spatial relations. The
main drawback is, however, that learning is performed strictly bottom-up — once a layer is
learned it accepts no further revisions. Performed in this way, object relevant information
gets either lost or a very large, possibly redundant set of features must be chosen at each
layer in order to compensate for the potential loss. This, however, may result in overfitting
certain more generic and less articulated parts of the objects yet may also lose the more
discriminative shape information. For object class detection these properties might have
negative implications on the performance.

Here we seek for a compact hierarchical shape vocabulary while also ensuring it contains
all object relevant information. The novel idea of this paper is to cast layer learning into a
stochastic optimization framework that iteratively improves the performance of the hierarchy
as a whole. We learn each layer with a two-fold optimization. The botfom-up phase learns
and selects the layer’s vocabulary by maximizing its expressiveness while keeping its com-
plexity low. In the top-down phase, the potential lack of expressiveness of the layer above
dictates how to extend the lower layer’s vocabulary in order to improve the higher layer per-
formance. The algorithm then iterates between the two learning stages several times to learn
each layer sufficiently well. While the optimization algorithm is general and could be ap-
plied over several layers simultaneously, the optimization over each two consecutive layers
has yielded satisfactory results. To learn the representation for an object class, we assume
supervision in terms of a positive and validation set of class images — however, we learn the
hierarchical shape vocabulary for the classes in a completely unsupervised way (no labels on
object parts and smaller constituents are assumed).

We have evaluated the proposed learning approach for object class detection on 11 object
classes. Compared to the original approach [6], we obtain an about 3 times more compact vo-
cabulary, a 2.5 times faster inference, and a 10% higher detection performance at the expense
of 5 times longer training time. The approach attains a competitive detection performance
with respect to the current state-of-the-art at faster inference as well as shorter training times.

2 Related work

Our main contribution is unsupervised learning of a hierarchical shape vocabulary, thus we
briefly review the related literature on this topic.
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Unsupervised hierarchical learning of object structure. Work on unsupervised learn-
ing of compositional hierarchies has been relatively scarce. Most unsupervised approaches
fall under the domain of neural networks [20], which are conceptually very different from
compositional representations [10]. Slightly more related, the HMAX approach [16, 22]
builds only 2 layers by choosing the combinations randomly as they appear (no statistical
learning is employed). Epshtein and Ullman [26] learn the hierarchical vocabulary by re-
cursively decomposing the class-specific patches into smaller ones. This is converse to the
process of composition taken here. An iterative bottom-up and top-down learning has been
proposed by Hinton [11], however, the author proposes a generative model of the appear-
ance of images (which is rigid with respect to shape deformations), whereas our aim here is
to learn a generative model of the shape of the objects.

The learning frameworks most related to ours include [6, 8, 18, 21] and just recently [28].
However, most of these methods learn the features only in a bottom-up manner. Zhu et
al. [28] first learn the whole hierarchy in a bottom-up pass but suggest the use of a top-down
stage in which the missed parts such as the legs of a horse are added to the representation
afterwards. In our work, the vocabulary at each layer is improved simultaneously by iterating
between the bottom-up and top-down stage within the learning process.

The works on learning object taxonomies [14, 17, 27] perform detection by hierarchical
cascade of classifiers which inherently differs from the generative approach taken here.

3 The hierarchical shape vocabulary

We first present the hierarchical framework which is mainly adopted from [6] but extended to
a probabilistic formulation. Our novel iterative learning approach is presented in Section 4.
The hierarchical vocabulary. The vocabulary at each layer contains a set of shape mod-
els or compositions. Each shape model in the hierarchy has a sparse, star-shaped topology,
and is modeled as a conjunction of a small number of parts (shapes from the previous layer).
Each part is spatially constrained on the parent composition via a spatial relation which we
model with a two-dimensional Gaussian. The number and the type of parts can be different
for each shape model and is learned from the data without supervision. The definition is
recursive, where each part is similarly composed of simpler subparts. At the lowest layer,
the hierarchical vocabulary consists of a small number of short contour fragments at coarsely
defined orientations. The vocabulary at the top-most layer contains compositions that code
the whole shapes of the objects. We emphasize that each such composition does not code
only the shape of one specific object, but exerts a certain degree of intra-class invariance.
The hierarchical vocabulary ¥ = (V, E) is represented with a directed graph, where mul-
tiple edges between two vertices are allowed. The vertices V of the graph represent the model
shapes and the edges E represent the composition relations between them. The graph 7 has
a hierarchical structure, where the set of vertices V is partitioned into subsets V' ..., V?,
each denoting the shapes at a particular layer. The vertices vi1 =Y, =i %, i=0,....,n—1,
at the lowest layer V! represent the n oriented contour fragments. The vertices at the top-
most layer V°, which will be referred to as the object layer, code the whole shapes of the
objects. Each object class C is assigned a subset of vertices V¢ C V that code the shapes
of that particular class. We will denote the set of edges between the vertex layers V¢ and
V! with E*. Each edge e, = vfevf_l in E' is associated with the Gaussian parameters
5. := O(ek:) = (Up;, Zk;) of the corresponding spatial relation between the parent shape vk
and its constituent shape vf_l. We will use 8% = (85;); to denote the vector of all the param-
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eters of a particular shape model. The number of constituent shapes of vR will be denoted
with d(v§). The pair 7 := (V¢,E") will be referred to as the vocabulary at layer (.

The shapes at the lowest layer V! (oriented contour fragments) are the only ones defined
in advance — the whole subsequent structure and the parameters of the vocabulary ¥ are
learned without supervision. The number of layers is also not set in advance.

Inference. Let / denote a query image in which we want to infer all (modeled) class
instances. Inference is performed at several scales of 7, but for the ease of exposition we will
only consider one scale. We first convolve the image with 6 oriented Gabor kernels and find
locations X of local maxima of the Gabor energy as proposed in [7]. In each point x € X we
extract a Gabor feature vector f containing the outputs of the 6 filters in point x. This gives
us a set of 6-dimensional feature vectors F = {f} at locations X. The obtained set (F,X)
represents the observations upon which we perform the inference.

In the process of inference we build an (directed) inference graph ¢ = 4(I) = (Z,Q).
The vertices Z are partitioned into vertex layers 1 to o (object layer), Z = Z' U--- U Z°,
and similarly also the edges Q = Q' U---U Q°. Each vertex Z= (v‘Z x ) € 7t represents a
hypothesis that a particular shape v/ € V¢ from the vocabulary is present at location x’. The
edges in Q' connect each parent hypothesis zf’e to all of its part hypotheses zf*] . The edges in
the bottom layer Q! connect the hypotheses in the first layer Z! with the observations. With
7 (z) we denote the subgraph of ¢ that contains the vertices and edges of all descendants
of z. The set of all descendants of z at vertex layer Z' will be referred to as the support of a
hypothesis z and denoted with supp(z).

Since our definition of each vocabulary shape model assumes that its parts are indepen-

dent given the parent structure, we can calculate the likelihood of the hypotheses szl =

(vffl,xffl) under a hypothesis zj = (v§,x%) by taking a product over the individual com-

1
patibilities (spatial constraints) of its parts:

p(Vfilaxfil | Vfbxévefe) = H p(xi[71 ‘xR’VR7 Vi leRl) (1)

el =vhvi!
We will use pg; instead of p(x; (=1 | X, Vi, v ; 1GRZ) to abbrev1ate the notation. The term pg;
stands for the spatial constraint between the parent zR and its constituent part zé ' Itis
modeled by a normal distribution, pg; = A (x! ™" —xg | 8%;), where 8}, = (,uR,,Zfel). If the
likelihood in (1) is above a threshold, we make edges between zfe and its parts zf I

The log-likelihood of the data under a shape hypothesis Zfe is then computed as:

logp(F.X,2" " |e:7)= Y logprs+ Y, logp(F.X|z). (2
g2y €E(S (2%)) Z},=(l[ll-/7x},)
V(S (%))

This is simply obtained by a recursive application of (1), which assumes that the subgraph
S (zfe) of a shape hypothesis zfg has a tree structure (learning [6] ensures this). For the data
term p(F,X | zll,) we use the probabilistic model of local contour orientations based on the
Gabor filter responses, p(f| y), as proposed in [13].

4 Iterative bottom-up and top-down vocabulary learning

The original idea of [6] is to find a vocabulary of shape models that well represent the dis-
tribution of the spatial layouts of contour fragments inside local neighborhoods (receptive
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fields or RFs). The sizes of the RFs are increased with each layer and part configurations are
learned to explain larger and larger image areas. In the top layer the RF covers the whole
image (object). In [6] the RFs were assumed independent, i.e. for each RF the frequency of
the composition that best explained its contour content was updated and the method finally
selected the set of most frequently occurring compositions. Since there is a huge variety of
local shape configurations, the number of compositions quickly increases to a large number
which makes further learning of combinations difficult (as also seen in [20, 22]).

Here we exploit the fact that the top, object-layer models will have a tree structure,
meaning that they are composed of disjunct parts at each layer. This means that we do not
need our vocabulary shapes to explain each of the RFs in an image, but must only be able

matched compositions.

The following sections present our novel iterative vocabulary learning approach. We first
present the theoretical framework and propose the bottom-up and top-down learning phases
in the following subsections.

4.1 Theoretical framework

Our goal is to find a hierarchical vocabulary ¥ that well represents the distribution p(I | C) =
p(Fr,X; | C;7) at minimal complexity of inference, where C denotes the class variable.
Specifically, we seek for a vocabulary ¥ = U, #* that optimizes the function f over the data
D = {(F,,X,,,C,) }_, (N training images):

¥* = argmax f(¥) where  f(¥)=L(D|¥)—A-T(D,¥) 3)
¥
The first term represents the log-likelihood:

N N
LD|7)= Z log p(Fp, X, | C; V) = Z IOgZP(FnaXmZ |C;7) 4)
n=1 n=1 z

The second term T (D, ") in (3) penalizes the complexity of the model. We define it as the
complexity needed to match the vocabulary ¥ against the images:

=X L1,
T'(Dy; V") = Z Y dw) )

( “Tx Zﬁ vva leg!
where d(v) denotes the number of parts of v%. In the first sum in (5) we assume we have
obtained the inference graph ¥ = (Z,,0Q,) under ¥ from the n-th image. Here T(D,¥)
roughly corresponds to the number of operations needed to perform inference [6].

The parameter A controls the amount of penalization by the complexity term. If A is
small, then f prefers large vocabularies with frequent shapes, whereas the higher values of
A penalize the redundancy of the shapes in the vocabulary. We set A by experimentation.

Since optimizing (3) is intractable, we choose to learn ¥ sequentially, layer by layer. At
each step, we will find ¥ ¢ that maximizes f defined in (3) where we assume that the class
layer ¥ is directly above layer ¢, i.e. 0 = £+ 1. For the complexity term T(D,¥") we must
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make a prediction about the value of T°(D; ¥ ):
|F|
[Supp’|

T°(Dy; V) = |Z,|- ©)
This term represents a rough estimate of the cost needed to infer a class layer o based on
¥ from images. To describe a class C with the shapes from 7 in an image I, our class
representation would need to use at least |F|/|supp’| shapes. Here |F| denotes the number
of all features vectors in / and [Supp’| denotes the average size of the support of shape
hypotheses from layer £. Thus |F|/[supp’| stands for the size of the partition of the hypothesis
layer Z¢ into hypotheses with disjoint supports, the number of which denotes an estimate
for the number of constituent shapes d(C) of class C. The term |Z{| assumes that a class
representation would need to be matched at each hypothesis in ZZ.

The problem when optimizing the vocabulary at each layer separately (the bottom-up
phase), is that the local solution does not necessarily lead to the globally optimal solution. A
vocabulary that is well expressive but very small at one layer, may, when further combined,
result in a vocabulary of lower expressiveness in the layers above, and thus give us poor
top-level models of object class shapes. We thus introduce the top-down phase of learning,
in which we revise the vocabulary at each layer as to maximally improve the expressiveness
of vocabulary at the layer above.

In the bottom-up phase, we first learn a large set of candidate shape models at each layer
as in [6]. Among these we select a subset of shapes which optimize f in (3) by using the
greedy algorithm. We further improve this selection by performing stochastic optimization.
In the top-down phase, we improve the vocabulary at each layer by feedback from the layer
above. We explain the steps in the following subsections.

4.2 Bottom-up learning phase

When learning the vocabulary ¥ = (V! E’) at layer £, we assume that for each training
image I we have the inference graph ¢ = (Z' U---UZ‘~!, Q) built up to layer £ — 1. To learn
a large set of candidate shape models we use the algorithm by [6]. It gives us a temporary
vocabulary #,' which contains shapes that optimize the log-likelihood L(D | #*), where,
however, D is a set of RFs collected around each point in an image. From %,/ we will select
a subset of shapes which optimize the global function f as defined in (3).

Greedy selection. We select a subset of the shape models from #, using a greedy ap-
proach. At each step of the iteration, we select a shape from %,/ that maximally increases the
score f defined in (3). Learning stops when the best scoring shape falls below a pre-defined
threshold. We denote the selected shapes with 7/5[

Stochastic optimization. We further employ a stochastic MCMC algorithm to get the final
vocabulary # at layer ¢. The first state of the Markov chain is the vocabulary ”i/g[ obtained
with the greedy selection. Let 7, denote the vocabulary at the current state of the chain. We
either exchange/add/remove one shape model from "/// with another one from % \ 7/[@ to get
the vocabulary ”f/ﬁl. The vocabulary “I/tﬁ | is accepted as the next state of the Markov chain
with probability

min(1, af(“//tﬂ)*f(”/z))’ a>1 7

according to the Metropolis-Hastings algorithm.
The vocabulary at layer £ is then defined as the #* producing the maximal value £(%),
after running several iterations of the M-H algorithm. We usually perform 100-200 steps.
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4.3 Top-down learning phase

The idea behind the top-down phase is to improve the vocabulary at layer ¢ in order to
increase the value of f under layer £+ 1. This procedure is summarized as follows. Step I.
We first find the critical data points under the current layer ¢+ 1. Step 2. We re-learn layer ¢
based on the critical points. Step 3. We re-learn layer £+ 1 and repeat the process.

Step 1. We first define the critical points in each image under the current layer ¢+ 1.
These are the points at which the ratio A of the likelihoods

Zzezli[+1 p(F7X7Z | C, /1/1:£+1)
Zzezli[ p(F,X,Z ‘ C7 7/1:[)

A(F,X) = ®)

is low. This ratio tells us how well an observation in (F,X) is explained under the vocabulary
¥ 141 relative to how well it is explained under ¥ ‘. Note that A € [0,1] and we set
A(f,x) = 1 when the denominator in (8) is 0. From (F,X) we select the points according to
the distribution 1 — A, i.e. each point (f,x) € (F,X) is sampled with probability 1 —A(f,x).
This heuristics has worked well in our experiments. The selected points are used as the data
D' for learning new shapes at layer £. If A(f,x) =0, it means that (f,x) is not explained
under the current vocabulary at layer £+ 1 and will be added to D’ with probability 1. On
the other hand, A(f,x) = | means that (f,x) is explained equally well by layer ¢ and ¢+ 1
and will not be used in the re-learning process.

Step 2. In this step, we learn a new set of shape models #’ using the algorithm by [6],
however, we only need to consider those RFs that contain points (contour fragments) from
D'. Specifically, we use only those RFs in which at least half of its points are from D’. The
shapes in %,/ will thus be optimized to explain the critical points. From the joint vocabulary
¥ U ¥, we need to select a subset of shapes which will produce an overall improved score
F(# 1) of the layer above. Therefore we perform the optimization from the previous
subsection on the joint vocabulary ¥ U ¥, over the original data D. To allow the algorithm
to select the shapes also from #; we must choose a different (smaller) A, when evaluating f
for layer ¢. We sample A, from (0, 4] randomly with respect to a uniform distribution.

Step 3. Running the optimization from Section 4.2 gives us a new layer “I/[ﬁl which we

then use to learn a new layer ”//tﬁl The new vocabulary ”//t%“ is accepted with probability
min(1, o/ Y1) =1 (% )). Based on the new layers ¢ and ¢+ 1, the complete top-down phase is
repeated several times and the best scoring vocabulary #“‘*1 is finally chosen.

In principle, we could optimize more than two layers simultaneously, however, the two-

consecutive-layer optimization has turned out to be sufficient in our experiments.

4.4 Learning of the object shapes

The complete hierarchical vocabulary is learned by performing bottom-up and top-down
optimization at each layer. Learning stops when no more layers are formed (no further
combination of shapes increases the value of f). In our experiments, learning for all the
classes stopped at layer 6. The shape models {v°} learned at the top layer are expected
to code the whole shapes of the objects. We additionally perform cross-validation of the
learned object models using an image validation set. Specifically, we impose a selection that
discards those v° that yield too many false positives on the validation images.
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S Experimental results

The approach was tested on 11 diverse object classes from the standard recognition datasets:
Apple logo, bottle, giraffe, mug and swan from the ETH shape data set [5], bicycle_side,
car_front, and cow_side from GRAZ [19], INRIA horses [5], TUD motorbike [12], and
UIUC multi-scale car_side. These datasets pose a significant challenge due to the high
amount of clutter, the great scale differences of objects and their significant intra class vari-
ability. All of the experiments were performed on one core of an Intel Xeon-4 CPU 2.66 Ghz.
The algorithm is implemented in C++.

Examples of the learned shapes (for several classes) are depicted in Fig. 1. Each shape is
composed of a few shapes from the previous layer, but the spatial relations are not shown.

When evaluating the detection performance, a detection is counted as correct, if the pre-
dicted bounding box by, coincides with the ground truth bg; more than 50%. On ETH and
INRIA datasets, this threshold is lowered to 0.3 to enable a fair comparison with the related
work [4]. The performance is given either with recall at equal error rate or positive detection
rate at low FPPI, depending on the type of results reported on these datasets thus-far.

Training time. It takes, for example, 23 minutes to train on Apple logo, 25 for bottle, 31
for giraffe, 31 for mugs, 17 for swans, 25 for cow, and 35 for the horse class. Training on 50
horses (as in our case) takes roughly 2 hours in [23] (C# implementation, 2.2 GHz machine).

Inference time. On average, the inference takes from 2 — 4 seconds per image. For
example, inference takes 3.6 seconds for Apple logos, 3.4 for bottles, 3.2 for giraffes, 3.6
for mugs, and 1.9 seconds for swans. To compare (in sec) with other object class detection
approaches: [24]: 20 — 30, [28]: 16.9, [9]: 20, [3]: 12 — 18, on somewhat older hardware.

Detection performance. The ETH experiments are performed in a 5-fold cross-validation
obtained by sampling 5 subsets of half of the class images at random as in [4]. Training of
the hierarchy was performed only within the given ground truth bounding boxes. The test
set for evaluating detection consists of all the remaining images in the dataset. The detection
performance is given as the detection rate at the rate of 0.4 false-positives per image (FPPI),
averaged over the 5 trials. Similarly, the results on INRIA horses are reported by sampling
5 subsets of 50 class images at random and using the remaining 120 for testing. The test set
also includes 170 negative images to allow for a higher FPPI rate. The detection performance
is reported in Table 1, with a few example detections shown in Fig. 4. With respect to the
most related approach [4] we achieve a better performance on all the categories, most notably
on giraffes (24.7%). On the average, our method performs comparably to [9] who employ a
fully discriminative framework in contrast to the generative approach taken here.

For the other classes we report the recall at EER in Table 1. On the GRAZ classes and
TUD motorbikes our performance is comparable to the current state-of-the-art results. Note,
however, that both, [15] and [12], used over 150 training examples of motorbikes, while we
only used 50. We also achieve a better performance on UIUC cars with respect to the layer
3 + voting for center as reported by the original approach by [6].

Comparison with baseline. To further utilize our learning approach we compare it against
the baseline ([6] — no optimization) on 3 object classes (cow, mug and giraffe). We addi-
tionally compare it with the one where no top-down optimization is performed. We compare
the sizes of all three learned representations (baseline vs no top-down opt vs full optimiza-
tion) in Fig. 2. It can be observed that the hierarchy obtained by the baseline approach is
roughly 3 times larger than the optimized hierarchy. This reflects in inference time which
is shown in Fig. 3(a). On the average, inference time for the baseline is 2.6 times higher
than that of our approach. However, since the baseline only performs one bottom-up pass in
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Figure 1: Example shapes in the learned hierarchical vocabulary. Each shape in the hierarchy
is a composition of a few shapes from the layer below. Each shape also models spatial
relations between its parts, which are not shown — only the mean of each shape is depicted.

learning, its training time is significantly faster, see Fig. 3(b). The detection rates are shown
in Fig. 3(c), which demonstrate that our approach is by 10% superior over the baseline. This
is likely because the baseline only selects the features by frequency of appearance and is thus
prone to missing out on the more discriminative features. Consequently, it does not separate
the foreground objects from a more generic background sufficiently well. While the no top-
down opt approach outperforms the baseline, it still does not reach up to the performance of
the full optimization approach.

Table 1: Detection results. Left: Average detection-rate (in %) at 0.4 FPPI for ETH and
INRIA datasets. Right: Recall at EER (%) for the GRAZ, TUD, and UIUC datasets.

[4] [9] | our appr. related work ours

apple 83.2(1.7) 89.9 (4 5) 87.3 (2.6) bicycle 72 [19]]|67.9[23] | 68.5

bottle 83.2(7.5) 76.8(6 1) 86.2 (2.8) bottle 91 [19]]90.6 [23] | 89.1

ETH |giraffe | 58.6(14.6) | 90.5 (5.4) | 83.3(4.3) GRAZLEOW 100 [19][98.5[23]] 96.9

shape [mug | 83.6(8.6) [82.7(5.1)|84.6(2.3) carfront| 90 [19][70.6 [23]| 76.5

swan | 75.4(13.4) [84.0(8.4) | 78.2(5.4) mug | 93.3[19]| 90[23]| 90

avg. 76.8 84.8 83.7 TUD | mbike 87 [12] 88 [15] | 83.2

[ INRIA [horse | 84.8(2.6) | /]185.1(2.2) | | UIUC | car 93.5[1]] 92.1[6]] 93.5
Size of representation: cow Size of representation: mug Size of representation: giraffe
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Figure 2: Comparing the sizes of representations obtained by the baseline, no top-down
optimization, and our full optimization approach for the (a) cow, (b) mug, and (c) giraffe.
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Figure 3: A comparison of (a) inference, and (b) training times, and (c) detection rates for
the baseline, no top-down optimization, and our proposed full optimization approach.

-

Figure 4: Example detections on the ETH shape database. The links are the edges of the
subgraphs . (z?) of the object hypotheses z° and are color-coded to denote different classes.

6 Summary and conclusions

In this paper, we presented a stochastic optimization approach to learning a compact hier-
archical shape vocabulary for object class detection. The optimization iterates between the
bottom-up and top-down learning stages, optimally revising the individual layers.

We have evaluated the approach on 11 diverse object classes and demonstrated the ad-
vantages in terms of speed of inference and detection performance over the previous ap-
proach [6] as well as the current state-of-the-art methods.
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