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Abstract

We study the relative orientation problem for two calibrated cameras with outliers
from the feature matching. In recent years there has been a growing interest in opti-
mal algorithms for computer vision. Most people agree that to get accurate solutions to
multiview geometry problems, an appropriate norm of the reprojection errors should be
minimized. To this end local as well as global optimization methods have been employed.

To handle outliers though, heuristic methods still dominate the field. In this paper
we address the problem of estimating relative orientation from uncertain feature corre-
spondences. We formulate this task as an optimization problem and propose a branch-
and-bound algorithm to find the optimal set of correspondences as well as the optimal
relative orientation. The approach is based on geometric constraints for pairs of cor-
respondences. The experimental results are promising, especially for omnidirectional
cameras. An implementation of the algorithm is also made publicly available to facilitate
further research.

1 Introduction

Geometric problems are central in computer vision. It can be the estimation of camera pose
from a single image or 3D reconstruction of a whole scene from multiple images. Typically,
feature points are first extracted from the images. These are then matched to corresponding
points in the model or in the other images. Next these corresponding points are used to
estimate the geometry. Given correct correspondences, accurate methods to estimate the
geometry often exist, see [6] for a survey. However, automatic matching is difficult and
avoiding erroneous matches is often impossible. This gives rise to outliers in the data, often
completely ruining the accuracy of the solution.

Estimation of relative orientation is a classical problem in vision. One of the most well-
known methods is the eight-point algorithm introduced by Longuet-Higgins in 1981 [10],
and modified by Hartley in 1997 [8] to include normalization. Although normalization made
the algorithm more robust to measurement noise, there are still algorithmic degeneracies
and the algorithm breaks down in the presence of outliers. For calibrated cameras, the first
guaranteed optimal algorithm based on minimizing reprojection errors appeared just recently
in [7]. A severe limitation of this method is that it cannot deal with outliers among the feature
correspondences.

Solving the relative orientation problem is difficult, since it is by nature non-convex and
known to be plagued by local minima and ambiguous solutions [1, 12]. To handle outliers
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in the correspondence set, heuristic methods like hypothesize-and-test approaches are still
dominating, for example, RANSAC [5, 9]. In this paper we address the problem of uncertain
feature correspondences by formulating it as a mathematical optimization problem. We pro-
vide both necessary and sufficient geometric constraints for an optimal solution. Based on
this analysis, we propose an algorithm to find the optimal set of correspondences as well as
the optimal relative orientation. A similar approach was proposed in [3] for the camera pose
problem.

2 Preliminaries

The algorithm presented here addresses exactly the same problem as is commonly done with
RANSAC, that is, trying to find the largest consistent set of correspondences. Unlike RANSAC
though, the new method is guaranteed to find the globally optimal solution. In this section we
introduce the constraints used in the algorithm and prove some results regarding sufficiency.
Working with calibrated cameras it is natural to represent image points using unit 3D vec-

tors x; defined by the projection
Ax,-:R(Xl-ft), (1)

where X; is the 3D point, 7 the camera centre and R the rotation of the camera relative the
world coordinate system. This way, the image plane of the ordinary perspective camera
model is replaced by an image sphere. One advantage is that omnidirectional cameras can
be handled in a natural way. Considering two cameras, we can assume that the first camera
is placed at the origin and oriented such that the rotation is equal to the identity, and thus the
relative orientation can be parameterized by a single rotation R and a translation vector ¢.

Definition 1. A correspondence is a pair of image points (x,x) with x belonging to the first
image and X to the second suggesting that x and X are the projections of a single 3D point.

Definition 2. Given an error tolerance €, a correspondence (x, %) is said to be consistent with
a relative orientation (R,t), if there exists a 3D point X such that its angular reprojection
errors satisfy

Z(x,X)<e and ZL(X,R(X—1))<e. )

‘We can now state the optimization problem that we are aiming to solve:

Problem 1. Given two sets of image points {x;} and {X;} with hypothetical correspondences
(xk,%), k=1,...,N and a prescribed error threshold &, compute the relative orientation of
the cameras which is consistent with as many correspondences as possible.

Our aim is an algorithm that is guaranteed to solve this optimization problem. To this
end, we first examine the geometrical constraints induced by a set of correspondences.

Consider feature points from two calibrated images and a set of hypothetical correspon-
dences. Suppose that we know the relative orientation of these images and want to determine
which correspondences are correct. We introduce new bases in both cameras with coinciding
z-axes parallel to the epipole of camera 1 and define & to be the relative rotation angle of
these bases (see Figure 2).

Using these bases, consider the spherical coordinates of a projected 3D point in the first

camera (00, Pproj) and in the second camera (0,0 j, Pproj ), Where the first coordinate is the
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image point

o
(f—\ epipole 0
[ e
camera 2
Figure 2: To compute the uncertainty # = u; + up when
R 6 > 0, we use the spherical law of sines, see [13].
epipole 0
camera 1 u
6 3

Figure 1: The z-axis goes through
the two camera centres and hence the
epipole e is parallel with the z-axis.
Similarly, the antipodal epipole f is
parallel to the z-axis.

Figure 3: Here we use the spherical law of cosines, see
[13]. The figure shows the two image spheres super-
posed. The uncertainty u is the azimuthal angle between
the image points such that the e-circles still intersect.

polar angle and the second the azimuthal angle. It must hold that 8, > 6,0 and @,; =
@proj + . The first constraint just reflects the fact that 3D points should be in front of both
cameras and the second that the image points should be coplanar with the camera centres.
Since we are interested in points with reprojection error less than &, similar constraints hold
for the measured image points. The constraint on the polar angle of corresponding image
points is the simplest,

O+e>0—¢. 3)

For the azimuthal angle, the error tolerance € gives rise to a larger angular uncertainty u.
Figure 2 shows how to compute this if 6 > 6. We get

u = arcsin (sin€ /sin ) + arcsin (sin€e /sin ) 4)

If & < 6, we get a different formula. Figure 2 shows how to compute the uncertainty in this
case, given that (3) is still satisfied. We get

u = arccos ((cos (2&) —cos O cos B) / (sinBsin6)). 6)

For a consistent correspondence, the difference between the azimuthal angles measured in
the first and second image, that is ¢ — @, satisfy

p—¢—af <u (6)

Theorem 1. Let (x,%) be a feature correspondence with spherical coordinates (0,¢) and
(8, Q), respectively. If for some o, both constraints (3) and (6) are satisfied then (x,%) is
consistent with the given relative orientation.

Proof. Tt is clear from (6) that we can pick coplanar vectors x’ and X' such that Z(x,x’) < €
and /(x,%') < €. Furthermore, (3) guarantees that we can pick these such that they intersect
with positive depths. This intersection is the desired 3D point of Definition 2. O
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The idea is to parameterize the relative orientation by specifying these coordinate sys-
tems in the original coordinates of the cameras. More precisely, let e be the epipole and thus
the new z axis of camera 1 given in the old camera coordinate system and f the same axis
but given in the camera coordinate system of camera 2. Knowing e allows us to compute the
polar angles 0 and the azimuthal angles ¢ for the first image, and similarly, knowing f in
the second image allows us to compute 8 and .

We eliminate the angle o by considering pairs of correspondences instead. Using (6) for
a pair of correspondences yields

(@; — @) — (o — @)| < uj+uy. @)

Another way to view these constraints is by considering the angle y;; between two epipolar
planes (see Figure 4). What (7) states is that apart from the uncertainty u; + u, this angle
should not depend on whether we measure it in the first camera, @; — @, or in the second,

Q;j — P

f
- -~/ 3D point
Lo
camera 2 ’/

~
N
~
N

e :' 3D point

camera 1

Figure 4: The angle y between two epipolar planes.

By construction, these constraints are necessary. Let us investigate the question of suffi-
ciency. We need the following lemma.

Lemma 1. Consider a set of intervals Iy on the unit circle such that |Iy| < 27t/3 for all k. If
the intersection I; () Iy is non-empty for any pair (j,k) , then (\; I is non-empty as well.

Proof. Pick any interval [; and let m be the centre of this interval. Note that the distance
between I; and the point m + 7 is larger than 27 /3 and thus m + 7 lies in no interval. Thus
we can cut the unit circle at m + 7 and map it to the real line R. The theorem now follows
from Helly’s theorem [2]. O

Now, if all pairwise correspondences fulfill (7) with uncertainty intervals less than 27 /3,
then from the above lemma we know that there exists an angle o such that constraint (6)
is fulfilled for each single correspondence. Applying Theorem 1 proves sufficiency. To
conclude, we have shown the following result.

Theorem 2. Let (x,%;), j=1,...,N be image correspondences with spherical coordinates
(6}, 9;) with respect to epipole e in the first image and (0;, ;) with respect to antipodal
epipole f in the second image. If all correspondences satisfy the positive depth constraint
in (3) and all pairs of correspondences satisfy constraint (7) with uncertainties u; + uy less
than 27 /3, then there exists a relative orientation (R,t) to which all correspondences are

consistent.
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Remark 1. The extra hypothesis that the uncertainty intervals should have length at most
27 /3 is just an annoying technicality. Larger intervals would generally correspond to image
points very close to the epipole (within angles € < 8 < 2¢€), and even if such points exist it is
very likely that the conclusion of the lemma still holds. To get around this problem one could
split long intervals and still get guaranteed convergence of our algorithm (see next section),
but we have not found any problem instance where this is necessary in practice.

2.1 Handling Outliers

How can these constraints be used to handle outliers? Regarding the constraint on the polar
angles 6 it is simple enough. A correspondence which does not satisfy this constraint must
be an outlier. For the pairwise constraints on ¢ it is more complicated. A violated constraint
only implies that one of the involved correspondences is incorrect, but how do we determine
which one? It may be that they are both involved in a number of violated constraints.

It turns out that the answer can be found in graph theory. Consider a graph with one ver-
tex for each correspondence. Remove correspondences which do not satisfy the constraint
on the polar angles. Then check the pairwise constraints on the azimuthal angles and mark
any inconsistence by adding an edge between the inconsistent correspondences. Solving
Problem | means removing as few correspondences as possible while explaining all incon-
sistencies, or equivalently, removing as few vertices as possible while covering all edges.
This is known as the vertex cover problem and is a classic graph theoretic problem. We will
not discuss it in detail here but note that it is an NP-hard problem and that it can always be
solved for example using a branch and bound. A more thorough discussion on using pairwise
constraints to remove outliers can be found in [4].

For our purposes very simple approximations for this problem will be sufficient. Assume
we are looking for a solution with less than N outliers. Then any correspondence involved in
more than N violated constraints can be removed. Furthermore, we can estimate number of
outliers for a given relative orientation by using the well known factor-2 approximation for
vertex cover (see [14]).

3 Algorithm

The previous section provided us with necessary and sufficient geometrical constraints on the
relative orientation. In this section we show how to evaluate these constraints and propose a
branch and bound scheme to find the optimal solution. Recall that according to Theorem 2,
one can solve Problem | by finding the epipole e in the first image and the antipodal epipole
f in the second image, which yields the largest set of pairwise consistent correspondences.
The possible values for these epipole parameters lie in S? x S? so we need some method
to search this space. We will use a branch and bound approach dividing the spheres into
smaller and smaller spherical triangles (see Figure 5). To evaluate the pairwise constraints
in (7), we need bounds on the possible values of the azimuthal angles. It is sufficient to con-
sider yjx = @; — @ which is the angle between two epipolar planes as illustrated in Figure 4.
Hence, our next goal is to derive upper and lower bounds on the epipolar plane angle y;; for
a pair of image points given that the epipole e lies in a spherical triangle. Similarly, we need
bounds on ¥ given that the antipodal epipole f lies in another spherical triangle. Our first
observation is that it is sufficient to consider the boundaries of the spherical triangles.
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Figure 5: A spherical triangle is a triangu- Figure 6: In the division step a triangle is
lar area on the sphere, bounded by great cir- divided into four smaller ones by dividing
cles. its sides at their midpoints.

Theorem 3. Given two image points x; and x and a spherical triangle of possible epipoles.
If either £x;j, £x; lie in the triangle then Yj. can assume any value. Otherwise the maximal
and minimal values for yj; are obtained on the triangle boundary.

To prove this claim we will use an explicit formula for the epipolar angle y (we tem-
porarily drop the subindex to simplify notations). We choose a special coordinate system
such that the two image points have coordinates (0,+a,b) and let e = (ey, ey, e;) be the po-
sition of the epipole and assume e, > 0 implying ¥y > 0. Let us first compute the normals of
the two epipolar planes,

be, — ae, bey +ae,
exx;= —bey , exXXx= —bey . 8)
aey —aey

Then consider their scalar product,

b*e; —a’el +bPe; —a’e; = cosy (\/(bey —ae;)? + 2 \/(bey +ae;)? + e%) )

The fact that e% + eg + e? = 1 and some simple calculus yield

ef —a*+ b )2( = 2abe, cot?y. (10)
We will only prove the case e, > 0 here. For e, < 0 an almost identical proof can be used
and tying them together is a simple question of going through some different cases.

Proof. (ex > 0) We will show that ¥ as a function of the epipole has no local extrema and
hence minimal and maximal values of Y are attained at the boundary. A good start would be
to prove that
e2—a?+ bze)zc
glex,ey) =2abcoty = )67 (11)
X

has no stationary points. Note that g; =0 only if e, = 0 and g, = 0 yields

2,2 2 2 12,2 22 2
_ 2b%e;—eyta —bey  bei+a

2 2 ’
ex €x

12)

which is never satisfied. Thus it remains to examine the special cases. For e + e§ =1we
get

1 —e2—a*+b%e? bz—azei » o,

h(ex) = 2abcoty = = L= — —a’ey (13)

€x €x €x
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/ _ b2 2
W(ey)=———a (14)
ex

which is never zero. Finally the end point e, = 1 turns out to be a saddle point and not an
extremum. O

To check the constraints on the epipolar plane angles ¥j;, we need to compute upper
and lower bounds for this angle on parts of great circles corresponding to the boundary of
a spherical triangle. We have experimented with several techniques to do this, mainly by
setting up the problem as a system of polynomial equations. The most effective turned out
to be a simple representation by angles.

Consider a great circle parameterized by a single angle &. Let d; be the angular distance
from image point i to this great circle. One way to compute ¥;; is to compute the angle
relative to the great circle for each image points (see Figure 7) and then compute pairwise
differences. In spherical coordinates this can be seen as computing @;

¢;(&) = Larccot (sin& cotd;). (15)

where the formula is obtained using the spherical law of cosines and the spherical law of
sines on the right-angled triangle in Figure 7. The sign in (15) depends on which side of the
great circle the image points lies. The angle between two epipolar planes thus gets the form

Yjx(§) = £arccot (sin & cotd;) & arccot (sin (§ + B) cotdy). (16)

There are two difficulties in approach. First of all, finding the maximum and minimum
values of (16), generally requires solving a sixth degree polynomial equation. Furthermore,
the number of functions to optimize is quadratic in the number of correspondences (since we
are considering all pairs). To address both these problems we compute simple under- and
overestimators for ¢;. These can then be used to produce under- and overestimators for the
Y;c’s in the first image (and similarly for ¥j; in the second image). This avoids the difficult
optimization of y; and most work is performed on the @;’s and is thus linear in the number
of image points.

Simple under- and overestimators for a C> function ¢(&) follows from the taylor expan-
sion.

P(&) > ol&) +(E— &) oG+ S g,

P(E) < p(E0) + (& — &) /(&) + =50 ‘30) Ol am

This is the type of estimations that we will use. In many cases these will show that yj is
in fact monotonic on the interval in question. In these cases it is sufficient to consider the
endpoints (i.e. corners of the spherical triangle) and computation is very fast. Otherwise we
use the upper and lower bounds given by the estimators. Note that since we are using a first
order approximation, the approximation error decreases quadratically with the radius of the
triangles.

Let us quickly go through the different steps of the algorithm. To initiate the branch
and bound search we divide the search space S? x S? into 64 starting blocks. A block here
is a pair of spherical triangles indicating the position of the epipole e of camera 1 and the
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Figure 7: We first compute angles to the great circle and then take pairwise differences to yield the
epipolar plane angles ¥;; = ¢; — ¢;.

antipodal epipole f of camera 2. We also need a bound on the optimal solution. This is a
starting guess for the number of outliers of the optimal solution and will be updated as the
algorithm progresses. If the starting guess is to low the algorithm is restarted with a higher
value.

Algorithm 1.

Iterate until desired precision is reached:
1. Pick a box from the queue.
2. Try to detect and remove outliers.
3. Try to discard the box.
4. If the box cannot be discarded:
- Divide the box and update the queue.
- Try improve the bound on the optimum.
5. Remove the box from the queue.

Finally a word on updating the bound on the optimum, that is, finding better and better
solutions. We do this by considering the centres of those boxes that could not be discarded.
For these points we compute all the constraints and count the number of outliers. As the
boxes get smaller and smaller, the optimal number of outliers will eventually be found.

4 Experiments

The algorithm was implemented in C and tried out on a 3.0 GHz Intel DualCore with 3 GB
RAM. We kept track of lower and upper bounds on the optimal solution (in terms of the
number of outliers) and stopped execution when the gap between the upper and lower bound
was smaller than 3.

4.1 Valbonne Church

The algorithm was evaluated on images from the Valbonne Church data set'. From the 15
images all pairs were formed. SIFT features were extracted and matched. The matching
criterion of [11] was used with a threshold of 0.6.

The threshold was set to 0.0005 radians and the starting guess for the number of outliers
to 5. The algorithm was terminated if the gap between lower and upper bound was less than
3 or if the average uncertainty of the epipole was less than 2 degrees.

IThe Valbonne data set was provided by ROBOTVIS, INRIA.
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Figure 9: Execution times for the Valbonne data

Figure 8: Example images from the Valbonne set. Between 10 and 100 points in each experi-
Church data set. ment (on average 64). Around 5% outliers.

4.2 Ladybug Sequence

We also tested on the omnidirectional images used in [7]. Among other things, execution
times depended on the distance between the cameras. This is natural since estimating the
epipole - being the direction of translation - is difficult when the length of the translation is
very small.

For these experiments the error threshold was set to 0.002 radians and the starting guess
for the number of outliers was initiated to 5. If there was no solution for the current threshold
was increased with 5 until a solution could be found.

Frequency

50

40

30

20

10 H B

10 20 30 40 50 60 300
Execution time (seconds)

Figure 10: Execution times for the ladybug data set. Between 20 and 100 points in each experiment (on
average 64). Around 10% outliers. Green indicates camera pairs with a greater base line and orange
the more difficult short base line cases.

5 Conclusion

To our knowledge, the proposed algorithm is the first that is guaranteed to find the optimal
relative orientation in the presence of outliers. Theoretic discussions as well as experiments
demonstrate its ability to compute the globally optimal solution while discarding outliers.
Execution times are still high for real-time applications but we believe that a significant
speedup is possible by saving results that can be re-used and by working on the function
approximations.
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