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Abstract
Geo-spatial data on village locations, their size, population and other parameters is

scarcely available to decision makers in many developing countries. In this paper, we
demonstrate an automatic “crawler” which can segment nucleated villages from satel-
lite imagery freely available in public domain geographic information systems such as
Google EarthTM. Our approach is to use frequency and color features to generate a num-
ber of weak classifiers, which are then combined through Adaboost to produce the final
classifier. We use a total of 69 features in the generation of the weak classifiers, including
phase gradients, cornerness measures and color features. Our primary dataset consists of
60 images having more than 345 million pixels and covering more than 100 km2 of area,
containing nucleated villages in fifteen countries, spread over four continents and cap-
tured by different sensors. Using six manual annotations for ground-truth, we perform
five-fold cross validation, using 25% of data for testing. Our results show an Equal Error
Rate (EER) of around 3.4%. Using the trained classifier, we detect villages on a 50 km2

image (close to 184 million pixels) from a different site than the images used in train-
ing, and demonstrate highly accurate extraction of villages with 2.3% false positives and
0.01% false negatives.

1 Introduction
The importance of geo-spatial information for development planning cannot be over- empha-
sized. Remote Sensing technologies are extensively used in the West for land-use analysis,
urban planning, crop mapping, planning of infrastructure, forest management and disaster
assessment. A recent National Academies’ report on the use of geographical information for
sustainable development in Africa emphasizes the importance of geo-spatial information for
developing countries, listing it as a key enabler of good governance [2]. Yet, in most devel-
oping countries, local administrators have limited, if any, access to geo-spatial information.
This leaves them with no decision support mechanism and people have little information on
their developmental rights, entitlements and comparative information of other similar com-
munities.

While direct access to recent satellite imagery may be expensive for local authorities in
developing countries, a wealth of image data is contained in online tools such as Google
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Figure 1: A selection of images containing nucleated villages. The terrain, type of construc-
tion, geographical location and imaging sensor generate high variability between images.

EarthTM and Microsoft’s Live Search MapsTM. However, such images, while suitable for
online viewing, do not yield the required geo-spatial information because of limited viewport
and due to the fact that the relevant geographical features have to be extracted and processed
before they are of use to the decision makers.

In this paper, we look at the problem of segmenting villages over a large area taken from
Google EarthTM. The ability to accurately segment villages and measure their properties,
such as their area, can be useful in a number of applications. For example, in disaster as-
sessment, such data can be used to quickly estimate the number of houses submerged in the
case of a flood. We have developed a crawler to save high resolution image blocks of a large
area from Google EarthTM. Once these images are saved, they are automatically stitched into
a single image, which is then used for further processing. The extracted geo-spatial infor-
mation may finally be presented in an appropriate manner, and may even be ported to GIS
tools such as ArcGISTM for further analysis and presentation. This provides a simple way for
resource strapped users in developing countries to generate and access large scale geo-spatial
datasets.

Robust segmentation of villages is a difficult problem because of the huge amount of
variability in the shape, features and layout of a village. Two basic morphological forms of
a village are dispersed settlements and nucleated villages [18]. Dispersed settlements, for
example the common type of villages in the Himalayas, are actually a collection of homes
scattered over a large area. This is in contrast to the concept of a nucleated village, the
more common notion of a village, which is largely a contiguous collection of homesteads,
built compactly around a village center. For the purposes of this paper, we concentrate
on the segmentation of nucleated villages. Even within this category, variability can be
huge; a mud-house village in Nigeria is very different in appearance from, say, a farmhouse
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(a) (b)
Figure 2: (a) Satellite image of a village near Faridabad, India. (b) Composite of ground
truth marking by six annotators. The different colors indicate varying number of votes for
each pixel (dark red - 6, orange - 5, yellow - 4, green - 3, cyan - 2, dull blue - 1 and dark blue
- 0). Note the high variability in the understanding of village boundaries. Some observers
mark the homes around roads as part of the village while others disagree.

community in the Netherlands. We tackle this variability by choosing examples of nucleated
villages from a number of different countries in our training dataset, a portion of which is
shown in Figure 1. Note the differences in sensor characteristics, terrain, type of construction
and geographical layout in these examples.

Since our goal in this work is to accurately segment each village, the notion of what con-
stitutes the boundary of a village becomes important. In most cases, the exact demarcation
of where the village ends and the peripheral areas start is not clear. For the purposes of this
paper, we consider the village extents to be delimited by the contiguity of the houses in it; ad-
joining farmland or open spaces are not considered part of the village class. Even under this
definition, the variability in what constitutes a village is very high between human observers.
Consider the image of a nucleated village shown in Figure 2. Six annotators were asked to
mark the ground truth of the village extents. Note the high variability in the marking, which
is typical for most cases. Some annotators understood the village to extend to houses along
the roads, while others disagreed. Similarly, an open field and clumps of trees north of the
main cluster were marked by some as part of the village and not by others.

We collected a reasonably representative dataset of nucleated villages for training and
testing our segmentation algorithm. We have created a dataset of 60 images, covering more
than 100 km2 of area. The approximate resolution of each image is 0.54 meters per pixel.
The data consists of nucleated villages in four continents and 15 different countries. Manual
annotations by six different persons were used as ground truth, and were fused together using
a Kalman Filtering framework. Based on this, five fold cross validation, with 25% test data,
was used during training. A total of 69 features, including phase gradient features [14],
‘cornerness’ features based on the eigenvalues of the gradient scatter matrix and a color
measure were used. The features were given as input to Adaboost algorithm to yield the
final classifier. Once the classifier was trained, we ran it on a large image extracted from
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Google EarthTM spanning approximately 50 km2, no portion of which was used in training
the classifier. Our classifier extracted all villages reasonably accurately, with approximately
2.3% false positives at less than 0.01% false negatives when compared to the ground truth
labeling.

1.1 Related Work
While land use mapping through satellite images has been in vogue in the remote sensing
community since the sixties, most of the work till late eighties has concentrated on pixel
based techinques, essentially learning the spectral signatures of various categories of land
cover [5][8]. A number of more sophisticated approaches have been developed in recent
years. A recent, excellent survey groups these methods into subpixel approaches, per-field
approaches, contextual approaches, knowledge-based approaches and hybrid methods [11].
It has been only in the last few years, with the availability of high-resolution imagery, that
segmentation and classification have been used together in land use analysis. The remote
sensing community terms such methods as ‘object-oriented’ methods [11][1]. However,
most of the papers concentrate on one type of sensor, such as QuickBird [19], IKONOS-2
[16]. While this paper is a limited application of land-use mapping with just one category,
what distinguishes it is that we have not restricted our application to a single sensor, or to
imagery captured at the same time. We have also not employed any radiometric or atmo-
spheric calibration techniques, as is the norm in remote sensing literature. We have just used
the RGB images, rather than additional spectral layers, with the view that this is what is
available to end-users in the developing countries.

2 Features and Classification
Object segmentation can be achieved using shape, texture and color as cues [13, 20]. In
case of our problem, however, nucleated villages can be of any arbitrary shape and size,
which leaves us with texture and color as the other potentially useful cues. In this section,
we present details of phase gradients as a texture descriptor. The phase gradient features
combined with color and a measure of cornerness are used in our system to characterize
nucleated villages.

2.1 Phase Gradient Features
Phase information, somewhat overlooked by researchers in texture analysis, can be used an
effective cue for texture analysis since its gradient can both represent textural properties and
point to the edge of textural regions. Let us model the visual texture in an image v(x) as a
linear combination of 2D sinusoidal wave functions and some additive white noise w(x), as
given below:

v(x) = ∑
i

ai(x)cosφi(x)+w(x) (1)

where x = [x,y]T and φi = [φix,φiy] denotes the local phase.
In 1D, computing the gradient of local phase yields instantaneous or local frequency. Es-

timation of local frequency in 2D, however, is faced with a couple of problems. First, unlike
signals in 1D, it is not entirely straightforward to compute the Hilbert transform of an image.
Second, 2D signals such as images are usually multi-component, which begs the question:
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what exactly is the local frequency? To overcome the former problem, solutions such as the
analytic image [7] or the monogenic signal [13] have been proposed. The latter problem
can be addressed by employing band-limited versions of the image, i.e., local frequency in
2D must be defined for each of the components, localized in frequency and orientation. We
utilize log-Gabor filters [3, 9] to decompose a given image into its scale+orientation compo-
nents, before computing the phase gradients for each of the components. These filters can
be thought of as Gabor filters on a logarithm scale.

Let vi(x) denote the ith log-Gabor component of a given image v(x). It can be represented
as follows,

vi(x) = |vi(x)|e jφi(x) (2)

where |vi(x)| denotes the magnitude of vi at a particular value of x. Differentiating both
sides of the above equation and re-arranging terms, we get the following expression for local
phase gradient,

φ
′
i (x) = j

[
|vi(x)|′

|vi(x)|
− v′i(x)

vi(x)

]
. (3)

The magnitude of φ ′i (x) as given below,

|φ ′i (x)|=

√
dφ 2

i
dx

+
dφ 2

i
dy

(4)

gives local frequency in a particular direction, namely the direction perpendicular to the ra-
dial direction in the log-Gabor domain. To the best of our knowledge, ours is the first method
to estimate the local frequency in this way. A vector of local frequency estimates for a range
of scales and orientations yields a signature which is used to characterize the nucleated vil-
lages. This is fundamentally different from other phase-based image descriptors, such as
[10], which rely on edge characterization rather than texture characterization.

2.2 Additional Features

In addition to the phase gradient features, we also added “cornerness” measure as a feature.
Motivated by [6] and [15], we compute the scatter matrix of the gradient vector over a 15 ×
15 neighborhood and take the smaller eigenvalue as a feature. This captures the notion that
we expect higher number of corner-type features in a village than in surrounding areas. This
feature is computed at eight levels of the pyramid. We also added a color feature which is
simply the green component of a pixel divided by its red plus blue components, to distinguish
trees and foilage from the village structures.

2.3 Classification

For classification, we generate weak classifiers based on our features and combined them
through Adaboost. We have used Gentle Adaboost, a variant of original Adaboost algorithm
[4] that gives lesser weight to outlier datapoints. A publicly available implementation [17]
was used in our experiments. This implementation uses CART trees as weak classifiers, but
we set the depth of the tree to one (tree stump classifier), so that raw features are simply
thresholded to generate the weak classifiers.
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Figure 3: Fusion of ground truth. Top row shows the original images. Middle row shows a
composite of six manual annotations (with the same coloring convention as used in Figure
2). Bottom row shows the fused ground truth.

2.4 Fusion of Ground Truth
To fuse the multiple ground truth labelings of each image, marked by six annotators, we
employed a Kalman Filtering framework as in [12]. To estimate the uncertainty of each
annotator, we asked them to mark a couple of images thrice at different times. The variance
of an annotator’s markings, normalized by the sum of variances of all annotators, was used
as a measure of uncertainty of that annotator, σ̂2

i = σ2
i /∑

6
j=1 σ2

j .

3 Experiments, Results and Discussion
In this section, we will describe our experimental setup and the results.

3.1 Generation of Datasets
We have written a crawler for Google EarthTM which has the capability of saving large satel-
lite images. The user defines the resolution at which the image needs to be saved and the
extents of the image, in terms of latitude and longitude coordinates of its bounding box.
Since the entire image rarely fits on the screen, our program generates a sequence of re-
quests for images at different camera locations, which are then screen-captured and saved.
When the complete area has been captured, we mosaic the screen-captured images into a
single large image. During this process, we keep the terrain layer turned off, so that per-
spective distortions are minimized, assuming that the original satellite data was reasonably
orthorectified.

To select the locations of villages, a host of strategies were used. About 25 images were
chosen by randomly browsing Google EarthTM. Another 25 were chosen by capturing 1000
random images from 10 different locations on the globe and manually identifying the ones
which contained a village. An additional 22 images were captured by automatically picking
random coordinates from settlement data available at http://fallingrain.com. However,
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Figure 4: A selection of testing results obtained during cross-validation. Villages of differing
characteristics are captured accurately, indicated by the red overlay.

because of registration errors, this strategy did not always yield a village at the captured
location. Finally, all of the images were reviewed manually to see whether they contained a
portion of a nucleated village at a high spatial resolution. A total of 55 images containing
nucleated villages and 5 images as negative examples were finally used in the dataset. Each
image was captured at a resolution of 0.54 meters per pixel and is of size 2400 × 2400
pixels, covering approximately 1.7 km2 on the ground. In this dataset, we have villages from
fifteen countries spread over four continents, though around 80% of the dataset is derived
from countries in Asia and Africa. Some of the images in this dataset are shown in Figure 1.

A secondary dataset for testing the trained classifier was generated by capturing a 50
km2 image from a rural area with planar terrain. There is no overlap between this image
and the original dataset of 60 images. This image was also captured at the same spa-
tial resolution using similar methodology, and contains approximately 184 million pixels.
The datasets used in this paper, along with the ground truths and the code are available at
http://cvlab.lums.edu.pk/villagefinder

3.2 Marking of Ground Truth
We asked six volunteers to segment out the villages in each of the sixty images of the first
dataset. The volunteers were given basic instructions in how to use Adobe PhotoshopTM

as a tool to mark the images. However, what constitutes a village was largely left to their
judgement. The initial few markings of each volunteer were not used, and they marked those
images again, presuming that this helped them learn the tool better. We fused these ground
truths together using the Kalman Filtering framework described earlier.

The second dataset, consisting of the single large image, was marked only by one anno-
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Figure 5: ROC curve of our classifier, obtained through five-fold cross-validation on a dataset
of 60 images, using 15 images in each fold for teseting. It shows an equal error rate of 3.4%

tator. However, the annotator who had the highest consistency in a test of marking the same
image multiple times was asked to mark this image.

We have used the first dataset of 60 images for the training and testing of the classifier
through cross-validation. A window size of 15 × 15 was used to compute phase gradient
and cornerness features. The color feature was computed at each pixel independently. We
used 6 scales and 10 orientation bins for the phase gradient features, 8 scales for cornerness
features and one color feature. This resulted in a total of 69 features. For classification, we
used an Adaboost implementation in tree stumps were used as weak classifiers [17].

3.3 Feature Extraction and Training
For training, we marked five 512×512 sub-images from each of the 60 images in the dataset.
For each fold of cross-validation, we used sub-images from 45 of the 60 images for training.
Testing was done on the rest of the 15 images using the entire image rather than the set
of sub-images. We averaged features within a 16× 16 window for training, and in a 8× 8
window for testing. The final output of the classifier is passed through a set of morphological
operations for cleanup. We first convolve the binary output of the classfier with a 32× 32
box filter and threshold the result. Next we apply a closing operator and fill any interior
holes. Finally we apply an area filter to remove small spurious detections. The same set of
parameters for morphological operations were used in all our experiments.

3.4 Segmentation Results
Five folds of cross validation were used. We ensured that each image was used in testing
at least once during cross validation. The results were averaged for each fold, which were
then averaged to generate the final ROC curve, shown in Figure 5. The Equal Error Rate
(EER) on this experiment was observed to be approximately 3.4%. Figure 4 shows some of
the testing results obtained during the cross-validation runs. Most of the results are highly
accurate, even though we observed some false negatives, mainly in very low contrast images.

It should be noted here that the results are being compared against ground truth, the
marking of which can have high variability, as illustrated in Figure 2. Moreover, our dataset
is very dense in terms of the ratio of village pixels to non-village pixels. In an actual exper-
iment over a large area, as the one described in the next subsection, the number of village
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Figure 6: Top: Village segmentation of a 50 km2 image of a rural area. The bottom row
shows zoomed view of some of the segmented villages. The first two images are villages
which were also marked in the ground truth. The last two images in this row show some of
the “false positives” which actually contain housing clusters not marked in the ground-truth.

pixels will be much smaller than the number of non-village pixels. This allows for tuning of
the classifier in favor of lesser false negatives, so that the impact of variability in marking of
the villages can be reduced.

3.5 Results on a Large Image Obtained by the Crawler

The trained classifier was used to search for villages in a large contiguous 50 km2 image ob-
tained by our crawler. Even though each fold of cross validation returned a different trained
classifier, we observed little difference in the final output between the different trainings.
Thus, we simply used the first fold classifier for this experiment. The image was segmented
using exactly the same parameters as before. The results are shown in Figure 6. Comparison
with the ground truth yielded 2.3% false positives at 0.01% false negative rate. Most of the
false positives were also observed to be small clusters of houses, which were not marked as
a village by the ground truth annotator. Other false positives included small areas of shrubs
which may accidently have similar frequency response. Almost no false negatives were ob-
served, other than the slight variation in village boundaries between the ground truth and the
output of our classifier. All 19 village clusters marked in the ground truth were correctly
recovered. By employing an area filter of 0.01 km2, 10 additional connected components
were observed, four of which were actual clusters of houses (not marked in the ground truth)
and six others were false detections.
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4 Conclusions
We have demonstrated a system to accurately segment nucleated villages from freely avail-
able satellite imagery available in online geographic information systems such as Google
EarthTM. The system employs phase gradient features along with color and cornerness mea-
sures to characterize the nucleated villages. To deal with the within-class variability of nucle-
ated villages, we trained the system on images taken from varied locations and by different
satellite sensors, and used six manual annotations to generate the ground truth, merged using
a Kalman filtering framework. Our approach shows excellent results when tested on a large
image captured using our crawler from Google EarthTM.
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