
EADS, et al.: LOCATION-BASED, GRAMMAR-GUIDED OBJECT DETECTION 1

Learning Object Location Predictors with
Boosting and Grammar-Guided Feature
Extraction

Damian Eads1

http://www.cs.ucsc.edu/~eads

Edward Rosten2

http://mi.eng.cam.ac.uk/~er258

David Helmbold1

http://www.cs.ucsc.edu/~dph

1 Department of Computer Science
University of California
Santa Cruz, California, USA

2 Department of Engineering
University of Cambridge
Cambridge, UK

Abstract

We present BEAMER: a new spatially exploitative approach to learning object de-
tectors which shows excellent results when applied to the task of detecting objects in
greyscale aerial imagery in the presence of ambiguous and noisy data. There are four
main contributions used to produce these results. First, we introduce a grammar-guided
feature extraction system, enabling the exploration of a richer feature space while con-
straining the features to a useful subset. This is specified with a rule-based generative
grammar crafted by a human expert. Second, we learn a classifier on this data using
a newly proposed variant of AdaBoost which takes into account the spatially correlated
nature of the data. Third, we perform another round of training to optimize the method of
converting the pixel classifications generated by boosting into a high quality set of (x,y)
locations. Lastly, we carefully define three common problems in object detection and de-
fine two evaluation criteria that are tightly matched to these problems. Major strengths of
this approach are: (1) a way of randomly searching a broad feature space, (2) its perfor-
mance when evaluated on well-matched evaluation criteria, and (3) its use of the location
prediction domain to learn object detectors as well as to generate detections that perform
well on several tasks: object counting, tracking, and target detection. We demonstrate
the efficacy of BEAMER with a comprehensive experimental evaluation on a challenging
data set.

1 Introduction
Learning to detect objects is a subfield of computer vision that is broad and useful with
many applications. This paper is concerned with the task of unstructured object detection:
the input to the object detector is an image with an unknown number of objects present,
and the output is the locations of the objects found in the form of (x,y) pairs, and perhaps
delineating them as well. A typical application is detection of cars in aerial imagery for
purposes such as car counting for traffic analysis, tracking, or target detection. Figure 1
shows (a) an example image from the data set used in the experiments, (b) its mark-up, (c)

c© 2009. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

BMVC 2009 doi:10.5244/C.23.92



2 EADS, et al.: LOCATION-BASED, GRAMMAR-GUIDED OBJECT DETECTION

(d) (e) (f)

(a) (b) (c) (g) (h) (i)

Figure 1: An aerial photo of Phoenix, AZ was divided into 11 slices. An example slice is
shown in subfigure (a). Its mark-up is shown in subfigure (b); background pixels are black,
object pixels are grey, and confuser pixels, white. Subfigure (c) shows an example of a post
processing applied to a weak hypothesis, which helps disambiguate between similar car and
building patches by abstaining on building pixels. Cars are indicated by red, background by
blue and abstention by green. Examples of ambiguous objects include (d) a roof-mounted
air-conditioner, (e) an overhead street sign, (f) vegetation, (g) closely packed cars, (h) a dark
car, and (i) a car on a roof carpark in partial shadow.

an example of an initial confidence-rated weak hypothesis learned on it, and subfigures (d-i)
show some of the trickier examples in the data set.

Section 2 reviews common approaches to object detection. Section 3.2 describes a new
variant of AdaBoost that takes into account the spatially correlated nature of the data to re-
duce the effects of label noise, simplify solutions, and achieve good accuracy with fewer
features. Section 3.1 describes our technique for generating features randomly but guided
by a stochastic grammar crafted by a domain expert to make useful features more likely, and
unhelpful features, less likely. A second round of training involves learning detectors which
predict (x,y) locations of objects from pixel classifications, described in Section 3.3. Since
the quality of detections greatly depends on the problem at hand, two different evaluation
criteria are carefully formulated to closely match three common problems: tracking, target
detection, and object counting. Lastly, in our evaluation Section 4, each component in the
detection pipeline is isolated and compared against alternatives through an extensive vali-
dation step involving a grid search over many parameters on the two different metrics. The
results are used to gain insights into what leads to a good object detector. We have found our
contributions give better results.

2 Background

Localizing objects in an image is a prevalent problem in computer vision known as object
detection. Object recognition, on the other hand, aims to identify the presence or absence of
an object in an image. Many object detection approaches reduce object detection to object
recognition by employing a sliding window [8, 12, 22], one of the more common design
patterns of an object detector. A fixed sized rectangular or circular window is slid across
an image, and a classifier is applied to each window. The classifier usually generates a
real-valued output representing confidence of detection. Often this method must carefully



EADS, et al.: LOCATION-BASED, GRAMMAR-GUIDED OBJECT DETECTION 3

arbitrate between nearby detections to achieve adequate performance.
Object detection models can be loosely be broken down into several different overlap-

ping categories. Parts-based based models consider the presence of parts and (usually) the
positioning of parts in relation to one another [1, 3, 7]. A special case is the bag of words
model where predictions are made simply on the presence or absence of parts rather than
their overall structure or relative positions [10, 23]. Some parts-based models model objects
by their characterizing shape during learning and matching shape to detect [2]. Cascades
are commonly used to reduce false positives and improve computational efficiency. Rather
than applying a single computationally expensive classifier to each window, a sequence of
cheaper classifiers is used. Later classifiers are invoked only if the previous classifiers gen-
erate detections. Generative model approaches learn a distribution on object appearances or
object configurations [14]. Segmentation-based approaches fully delineate objects of interest
with polygons or pixel classification [20]. Contour-based approaches identify contours in an
image before generating detections [8, 15]. Descriptor vector approaches generate a set of
features on local image patches. One of the most commonly used descriptors is the Scale In-
variant Feature Transform (SIFT), which is invariant to rotation, scaling, and translation and
robust to illumination and affine transformations [13]. A large number of object detectors
use interest point detectors to find salient, repeatable, and discriminative points in the image
as a first step [1, 5]. Feature descriptor vectors are often computed from these interest points.
Probabilistic models estimate the probability of an object of interest occurring; generative
models are often used [7, 19]. Feature Extraction creates higher level representations of the
image that are often easier for algorithms to learn from. Heisele, et al. [10] train a two-level
hierarchy of support vector machines: the first level of SVMs finds the presence of parts,
and these outputs are fed into a master SVM to determine the presence of an object. Dorko,
et al. [5] use an interest point detector, generate a SIFT description vector on the interest
points, and then use an SVM to predict the presence or absence of objects.

One of the more popular and highly regarded feature-based object detectors is the slid-
ing window detector proposed by Viola and Jones [22], which uses a feature set originally
proposed by Papageorgiou, et al. [16]. Adjacent rectangles of equal size are filled with 1s
and −1s and embedded in a kernel filled with zeros. The kernel is convolved with the image
to produce the feature and using an integral image greatly reduces the computation time for
these features. Viola and Jones employ a cascaded sliding window approach where each
component classifier of the cascade is a linear combination of weak classifiers trained with
AdaBoost.

3 Approach
The BEAMER object detector pipeline consists of a feature extraction stage, pixel classifica-
tion stage, and a detector stage as Figure 2 shows. First, a set of learned features are com-
bined into a pixel classifier using AdaBoost [9]. Then, the detector pipeline (see Section 3.3)
transforms the pixel classifications into a set of (x,y) locations representing the predicted
locations of the objects. Our methodology partitions the data set into training, validation,
and test image sets. The pixel classifier is learned during the training phase on the training
images with the grammar constraints, post-processing parameters, and stopping conditions
remaining fixed. These fixed parameters are later tuned on the validation set along with the
detector’s parameters. The detector generates (x,y) location predictions from the pixel clas-
sification. After the training and validation steps, a fully learned object detector results. The



4 EADS, et al.: LOCATION-BASED, GRAMMAR-GUIDED OBJECT DETECTION

Feature
Extractor

Feature
Extractor

Feature
Extractor

Feature
Extractor
Feature
Extractor
Feature
Extractor

>= a

< b

>= c

Region Grow 
[t=500]

Erode [r=2],
Dilate [r=3]

Region Grow 
[t=1000]

Weighted
Sum

Grammar
Feature(X)->...

Detector

(x,y)

(x,y)

(x,y)

Scoring
Metric

Hit

Miss

Hit

ROC Curve

Feature Extraction Apply Decision Stumps Postprocessing

Boosting Ensemble

Features Weak Hypotheses

Confidence 
Image

Selected with AdaBoost
Scores Final Detections

Parameters Selected through Validation

Figure 2: Object detection is carried out in a pipeline consisting of three stages: feature
extraction, pixel classification, and locality predictions in the form of (x,y). At each training
iteration, a new pool of feature extractors generated by a grammar. BEAMER then chooses
the best feature extractor, decision stump, and post-processing filter combination. Thresh-
olding these features yields a weak pixel classification which are combined with AdaBoost
to produce a confidence image. The grey arrows show the flow of data to carry out object
detection from start to finish for a static instance of an object detector.

grey arrows show how data flows through a specific instance of an object detector.
Section 3.1 describes the very first step of weak pixel classification, feature extraction,

which is carried out by generating features with a generative grammar. Section 3.2 describes
the learning of an ensemble of weak pixel classifications using boosting. Finally, Section 3.3
explains how the pixel classification ensemble is transformed into (x,y) location domain
predictions. A complete list of all the parameters described in the following sections is given
in Table 2.

3.1 Feature Extraction
A single pixel in a greyscale image provides very limited information about its class. Feature
extraction is helpful for generating a more informative feature vector for each pixel, ideally
incorporating spatial, shape, and textural information. This paper considers extracting fea-
tures with neighborhood image operators such as convolution and morphology. Even good
sets of neighborhood-based features are unlikely to have enough information to perfectly
predict labels, but the hope is that large and diverse sets of features can encode enough in-
formation to make adequate predictions. At each boosting iteration, a new set of random
features is generated, but only the best feature of this set is kept.

Generative grammars are common structures used in Computer Science to specify rules
to define a set of strings [11, 21]. Extending our earlier work on time series [6], we use them
to specify the space of feature extraction programs, which are represented as directed graphs
(a graph representation is preferable because it allows for re-use of sub-computations). A
grammar is made up of nonterminal productions such as P → A|B, which are expanded to
generate a new string. The rules associated with the production are selected at random, so
P can be expanded as either A or B. Figure 3 shows an example graph program generated



EADS, et al.: LOCATION-BASED, GRAMMAR-GUIDED OBJECT DETECTION 5

I

‘ellipse’, π

2 ,8, .3

normDiff
erode

Figure 3: An example of a feature extractor program generated by the BEAMER grammar
which is achieved by reducing Feature(I) using the production rules of the grammar
(where I is an image variable), Feature(I) → Compound(I) → Binary(I,Compound(I)) →
Binary(I,Unary(I)) → Binary(I,NLUnary(I)) → Binary(I,Morph(I,RandomSE)) →
Binary(I,erode(I,RandomSE)) → Binary(I,erode(I,(′ellipse′, pi/2,8,0.3))) →
normDiff(I,erode(I,(′ellipse′, pi/2,8,0.3)))

Function Description
mult(IA, IB) Element-wise multiplies two images, f (a,b) = ab.
blend(IA, IB) Element-wise averaging of two images, f (a,b) = a+b

2 .
normDiff(IA, IB) Normalized difference, f (a,b) = a−b

∑p∈IA
p+∑p∈IB p .

scaledSub(IA, IB) Scaled difference, f (a,b) = a−b
a+b .

sigmoid(I, θ , λ ) Soft maximum with threshold θ and scale λ , f (u) =
arctan(λ (u+θ))

λ

ggm(I, σ ) Applies a Gaussian Gradient Magnitude to an image.
laplace(I, σ ) Laplace operator with Gaussian 2nd derivatives & standard

deviation σ .
laws(I, u, v) Applies the Laws texture energy kernel u · v.
gabor(I, θ , k, r, ν , f ) Applies a gabor filter of a specified angle θ , size k, ratio r,

frequency ν , and envelope f .
ptile(I, p, S) A p’th percentile filter with a structuring element S applied to

an image I.

Table 1: Primitive operators used by the grammar. Element-wise operators are described by
a function f (a,b) of two pixels a and b. Unary operators f (u) are described by a function of
one pixel u. A k by k structuring element is parametrized with an ellipse orientation θ and
width to height ratio r.

by the BEAMER grammar shown in Figure 4. The primitive operators used for our object
detection system are listed in Table 1 and the grammar governing how they are combined is
shown in Figure 4.

3.2 Pixel Classification with Spatially Exploitative AdaBoost

The top of Figure 2 illustrates the pixel classification part of the BEAMER object detection
pipeline. The goal of pixel classification is to fully delineate the class of interest but we in-
troduce modifications. A set of feature extraction algorithms is applied to an image, resulting
in a set of feature images. These feature images are thresholded and post-processed to cre-
ate weak pixel classifiers for detecting object pixels. The final pixel classifier is a weighted
combination of these weak pixel classifiers which output confidence with their predictions.

Learning is based on a training set where all the pixels belonging to the objects of in-



6 EADS, et al.: LOCATION-BASED, GRAMMAR-GUIDED OBJECT DETECTION

Feature(X) → Binary(Unary(X),Unary(X))
| NLUnary(Unary(X))
| NLBinary(Unary(X),Unary(X))
| Compound(X)

Binary(X ,Y ) → mult(X ,Y ) | normDiff(X ,Y ) | scaledSub(X ,Y ) | blend(X ,Y )
NLBinary(X ,Y ) → mult(X ,Y ) | normDiff(X ,Y )

Unary(X) → LUnary(X) | NLUnary(X)
Compound(X) → Unary(X) | Binary(X ,Compound(X))
Morph(X ,S) → erode(X ,S) | dilate(X ,S) | open(X ,S) | close(X ,S)
RandomSE() → (θ ∈ [0,2π],{2k +1|k ∈ {1, . . . ,7}},{102s−1|s ∈ [0,1]})
NLUnary(X) → sigmoid(X ,a ∈ SNorm(),b ∈ {0.1,0})

| Morph(X ,RandomSE())
| ptile(X , p ∈ [0,100],RandomSE())
| ggm(X ,3∗SNorm())

LUnary(X) → laws(X ,u ∈ {L5,E5,S5,R5,W5},v ∈ {L5,E5,S5,R5,W5})
| laplace(X ,σ ∈ 3∗SNorm())
| gabor(X ,θ ∈ [0,π],k ∈ [1,31],{102q−1|q ∈ [0,1]},{10s+2|s ∈ [0,1]},sin|cos|both)
| convolve(X ,ViolaJonesKernel())

Figure 4: The grammar used to generate features for the pixel classification stage of the
object detection system. The ViolaJonesKernel() does not sample uniformly from the
space of all kernels. Rather, the kernel type (horizontal-2, vertical-2, horizontal-3, vertical-
3, quad) is chosen uniformly at random, followed by the size, then location. RandomSE
defines an elliptical structuring element, where the parameters of the ellipse are respectively
orientation, major radius in pixels and aspect ratio. The meanings of the other parameters
are given in Table 1.

(a) (b) (c) (d) (e)

Figure 5: Subfigures (b)-(e) are five examples of features generated by a grammar and ap-
plied to the image shown in subfigure (a).

terest (cars in our case) are hand-labeled. There are several difficulties in identifying good
weak pixel classifiers from the hand-labeled training data. First, in applications like ours
there are many more background pixels than foreground (object) pixels. Providing too much
background puts too much emphasis on the background during learning, and can lead to hy-
potheses that do not perform well on the foreground. Second, hand-labeling is a subjective
and error prone activity. Pixels outside the border of the object may be accidentally labeled
as car, and pixels inside the border as background. It is well known that label noise causes



EADS, et al.: LOCATION-BASED, GRAMMAR-GUIDED OBJECT DETECTION 7

difficulties for AdaBoost [4, 17]. This difficulty is compounded when the image data itself is
noisy or there may not be sufficient information in a pixel neighborhood to correctly classify
every pixel. Third, training a pixel classifier that fully segments is a much harder problem
than localization. For example, if a weak hypothesis correctly labels only a tenth of the
object pixels and these correct predictions are evenly distributed throughout the objects, the
weak hypothesis will appear unfavorable. This is unfortunate because the weak hypothesis
may be very good at localizing objects, just not fully segmenting them. Similarly, some oth-
erwise good features may identify many objects as well as large swaths of background. In
terms of localization, the performance is good but these hypotheses will be rejected by the
learning algorithm because of the large number of false positives they produce.

We propose three spatially-motivated modifications to standard AdaBoost to perform
well with the difficulties above. First, we weight the initial distribution so the sum of the
foreground weight is proportionate with the background class. Second, we use confidence-
rated AdaBoost proposed by Schapire and Singer [18] so weak hypotheses can output low
or zero confidence on pixels which may be noisy or labeled incorrectly. In confidence-
rated boosting, the weak hypotheses output predictions from the real interval [−1,1] and
the more confident predictions are farther from zero. In the boosting literature, the edge is
defined as the weighted training error. Third, we perform post-processing on the weak pixel
classifications to improve those that produce good partial segmentations of objects.

Weak Classifier Post-processing Four different weak pixel classification post-processing
filters are considered and compared against no filtering at all. The first technique performs
region growing (abbreviated R) with a 4-connected flood fill. Regions larger than k pixels
are identified and converted to abstentions (zero confidence predictions). This is useful for
disambiguating cars from large swaths, such as buildings, which may have similar texture
as cars. This simple post-processing filter works very well in practice. The other three post-
processing techniques apply either an erosion (E), a dilation (D), or a local median filter
(M) using a circular structuring element of radius r. When applying one of these filters, a
pixel classifier only partially labeling an object will be evaluated more favorably. This im-
proves the stability of learning in situations where the object pixels are noisy in the images
and pixels are mislabeled. Section 4 thoroughly compares the performance of different com-
binations of these four post-processing filters, all of which show better performance than no
filtering at all.

3.3 Learning and Predicting in the (x,y) Location Domain

The final stage of object detection turns the confidence-rated pixel classification into a list
of locations pointing to the objects in an image. Noisy and ambiguous data often reduce
the quality of the pixel classification, but since we use pixel classification as a step along
the way, we perform an extra round of training to learn to transform a rough labeling of
object pixels into a high quality list of locality predictions, and to do so in a noise-robust and
spatially exploitative manner. Pure pixel-based approaches are hard to optimize for location-
based criteria, and often translate mislabeled pixels into false positives. Our algorithms turn
the pixel classifications into a list of object locations, allowing us to operate in and directly
optimize over the same domain as the output: a list of (x,y) locations.

A confidence-rated pixel classification provides predictive power about which pixels are
likely to belong to an object. The goal is a high quality localization, rather than object



8 EADS, et al.: LOCATION-BASED, GRAMMAR-GUIDED OBJECT DETECTION

delineation, so we reduce the set of positive pixels to a smaller set of high-quality locations.
The first object detector, Connected Components (CC) thresholds the confidence image
at zero, performs binary dilation with a circular structuring element of radius σCC, finds
connected components and marks detections at the centroids of the components.

Large Local Maxima (LLM), is like non-maximal suppression but instead represents
the locations and magnitudes of the maxima in location space as opposed to image space.
The approach sparsifies the set of high confidence pixels by including only local maxima
as guesses of an object’s location. Next, the LLM detector chooses among the set of local
maxima those pixel locations with confidences exceeding a threshold θLLM . This method of
detection is attractive because it is very fast, and somewhat reminiscent of decision stumps.
The detector outputs these large maxima as its final predictions, ordering them with decreas-
ing confidence. A Gaussian smoothing of width σLLM can be applied before finding the
maxima to reduce the noise and further refine the solutions.

The LLM detector treats maxima locations independently, which can be quite sensitive
to the presence of outlier pixels and noisy imagery. Noisy imagery often leads to an excess
of local maxima, some of which lie outside an object’s boundary, which often results in
false positives. We propose an extension of the LLM detector called the Kernel Density
Estimate (KDE) detector for combining maxima locations into a smaller, higher quality
set of locations based on large numbers of maxima with high confidence clustered spatially
close to one another. More specifically, the final detections are the modes of a confidence-
weighted Kernel Density Estimate computed over the set of LLM locations. The width of the
kernel is denoted σKDE . Our results show the KDE and LLM detectors perform remarkably
well in the presence of noise.

4 Evaluation and Conclusions

Generating a ROC curve for a classifier involves marking each classification as a true nega-
tive or false positive. Quantifying the accuracy of unstructured object detection with a ROC
curve is not as straightforward: the criteria for marking a true positive or false positive de-
pends on the object detection task at hand. We consider three object detection problems:
cueing, tracking, and counting and define two criteria to mark detections that are closely
matched with these problems. Points on the ROC curves are then drawn using predicted
locations above some confidence threshold.

The goal of the cueing task is to output detections within the delineation of the object.
False positives away from objects are penalized, but multiple true positives are not. Figure 6,
subfigures (a-c) show the results for this metric.

We introduce the nearest neighbors criteria for marking detections for object tracking.
Good detectors for tracking localize objects within some small error, and multiple detections
of a given object are penalized. At each threshold the criteria finds the detection closest to
an object. This pair is removed and the process is repeated until either no detections or no
objects remain, or the distance of all remaining pairs exceeds a radius, r. Remaining objects
are false negatives and remaining detections are false positives.

Lastly the task of object counting is concerned less with localization and more with
accurate counts. We employ the nearest neighbors criteria for this purpose but to loosen the
desire for a spatial correlation between detections and object locations, we set the nearest
neighbor radius threshold r to a high value.



EADS, et al.: LOCATION-BASED, GRAMMAR-GUIDED OBJECT DETECTION 9

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Mean FP Per Image/Mean # of Objects Per Image

0.0

0.2

0.4

0.6

0.8

1.0
D

e
te

ct
io

n
 R

a
te

Grammars and Postprocessing [Cueing]

Grammar w/ PP
Grammar w/o PP
Haar w/ PP
Haar w/o PP
Random

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Mean FP Per Image/Mean # of Objects Per Image

0.0

0.2

0.4

0.6

0.8

1.0

D
e
te

ct
io

n
 R

a
te

Comparison of Postprocessors  [Cueing]

No Filtering
R
E,D
E,D,M
R,E,D,M
Random

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Mean FP Per Image/Mean # of Objects Per Image

0.0

0.2

0.4

0.6

0.8

1.0

D
e
te

ct
io

n
 R

a
te

Comparison of Detectors  [Cueing]

Best KDE
Best LLM
Best CC
Random

(a) (b) (c)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Mean FP Per Image/Mean # of Objects Per Image

0.0

0.2

0.4

0.6

0.8

1.0

D
e
te

ct
io

n
 R

a
te

Grammars and Postprocessing [NN Metric r=10]

Grammar w/ PP
Grammar w/o PP
Haar w/ PP
Haar w/o PP
Random

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Mean FP Per Image/Mean # of Objects Per Image

0.0

0.2

0.4

0.6

0.8

1.0

D
e
te

ct
io

n
 R

a
te

Comparison of Postprocessors  [NN Metric r=10]

No Filtering
R
E,D
E,D,M
R,E,D,M
Random

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Mean FP Per Image/Mean # of Objects Per Image

0.0

0.2

0.4

0.6

0.8

1.0

D
e
te

ct
io

n
 R

a
te

Comparison of Detectors  [NN Metric r=10]

Best KDE
Best LLM
Best CC
Random

(d) (e) (f)

Figure 6: Subfigures (a-c) show the result of applying the best model to the validation set
using the cueing metric. Subfigures (d-f) show the result for the nearest neighbors metric.
The best model for each aspect in a comparison filter is applied to the unseen test data set.

Parameter Parameters Tried
Iterations T ∈ {10,25,50,75,100}
Features/per iter w = 100
Feature Set Grammar, Haar-only, Grammar w/o Morphology or w/o Haar
Post-Processing Region grow (R), Erosion (E), Dilation (D), Median (M), None (N)

w/ combinations {R}, {E,D}, {E,D,M}, {R,E,D,M}, {N}
CC Detector σCC from 0 to 20 (0.2 increments) exclusive.
LLM Detector σLLM from 0 to 20 (0.2 increments) exclusive.
KDE Detector σKDE from 0 to 10 (0.1 increments) exclusive, σLLM as above.
Features Generate w for each of T iterations.
Decision Stump Pick best threshold for each post-processing parameter tried.
Region grow PP k is varied from 1000 to 5000 (increments of 500).
Region grow PP k is varied from 1000 to 5000 (increments of 500).
E,D,M PP r is varied between 1 and 5.

Table 2: The first part of the table describes each parameter adjusted during validation. A
highly extensive grid search was performed over a parameter space defined by the Cartesian
product of these parameters. The second part shows the model parameters adjusted during
an AdaBoost training iteration.

We use the Area Under ROC Curve (AROC), computed numerically with the trape-
zoidal rule, as the statistic to optimize during validation to find the model parameters that
perform the most favorably on the validation set. Since detectors may generate vast numbers
of false positives, we arbitrarily truncate the curves at U false positives per image (U = 30
in our experiments). Validation is performed over the range of parameters given in Table 2.



10 EADS, et al.: LOCATION-BASED, GRAMMAR-GUIDED OBJECT DETECTION

Figure 6 illustrates the results of applying the most favorable models and parameter vec-
tors (determined using the validation data) to the test set. Subfigure (a)–(c) and (d)–(f) illus-
trate the performance using the cueing and tracking metrics. Subfigures (a) and (d) show the
clear advantage of using post-processing and grammar-guided features over just Haar-like
features. Subfigure (b) and (e) show the benefit of post-processing for reducing the effects of
label and image noise, and clearly highlights the need to properly tune parameters through
validation and train all stages for each problem. Region growing performs better on the near-
est neighbors metric–unsurprising as it abstains on ambiguous background patches, reducing
false positives. On the cueing metric, morphology helps in reducing the effects of label noise,
which often leads to false positives outside an object delineation. Finally subfigures (c) and
(f) show that the spatially exploitative detection algorithms LLM and KDE outperform the
pixel-based CC detector.

References
[1] Shivani Agarwal, Aatif Awan, and Dan Roth. Learning to Detect Objects in Images

via a Sparse, Part-Based Representation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, pages 1475–1490, 2004.

[2] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape matching and object recogni-
tion using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 24:509–522, 2002.

[3] Ondřej Chum and Andrew Zisserman. An exemplar model for learning object classes.
IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8, 2007.

[4] Thomas G. Dietterich. An Experimental Comparison of Three Methods for Construct-
ing Ensembles of Decision Trees: Bagging Boosting, and Randomization. Machine
Learning, 40(2):139–157, 2000.

[5] Gyuri Dorkó and Cordelia Schmid. Selection of scale-invariant parts for object class
recognition. IEEE International Conference on Computer Vision, 1:634, 2003.

[6] Damian Eads, Karen Glocer, Simon Perkins, and James Theiler. Grammar-guided
feature extraction for time series classification. Technical Report LA-UR-05-4487,
Los Alamos National Laboratory, MS D436, Los Alamos, NM, 87545, June 2005.

[7] Rob Fergus, Pietro Perona, and Andrew Zisserman. Object class recognition by unsu-
pervised scale-invariant learning. IEEE Conference on Computer Vision and Pattern
Recognition, 2:264, 2003.

[8] Vittorio Ferrari, Loic Fevrier, Frédéric Jurie, and Cordelia Schmid. Groups of adjacent
contour segments for object detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 30(1):36–51, January 2008.

[9] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In
International Conference on Machine Learning, pages 148–156, 1996.

[10] Bernd Heisele, Purdy Ho, Jane Wu, and Tomaso Poggio. Face recognition: component-
based versus global approaches. Computer Vision and Image Understanding, 91(1-2):
6–21, 2003.



EADS, et al.: LOCATION-BASED, GRAMMAR-GUIDED OBJECT DETECTION 11

[11] John Hopcroft and Jeffrey Ullman. Introduction To Automata Theory, Languages, And
Computation. Addison-Wesley, 1990.

[12] Ivan Laptev. Improvements of object detection using boosted histograms. British Ma-
chine Vision Conference, 3:949–958, 2006.

[13] David G. Lowe. Object recognition from local scale-invariant features. IEEE Interna-
tional Conference on Computer Vision, 2:1150, 1999.

[14] Kristian Mikolajczyk, Bastian Leibe, and Bernt Schiele. Multiple Object Class Detec-
tion with a Generative Model. Computer Vision and Pattern Recognition, pages 26–36,
2006.

[15] Andreas Opelt, Axel Pinz, and Andrew Zisserman. A Boundary-Fragment-Model for
Object Detection. Lecture Notes in Computer Science, 3952:575, 2006.

[16] Constantine P. Papageorgiou, Michael Oren, and Tomaso Poggio. A general framework
for object detection. IEEE International Conference on Computer Vision, pages 555–
562, 1998.

[17] Gunnar Rätsch, Takashi Onoda, and Klaus Müller. Soft margins for AdaBoost. Ma-
chine Learning, 42(3):287–320, 2001.

[18] Robert Schapire and Yoram Singer. Improved boosting algorithms using confidence-
rated predictions. Machine Learning, 37(3):297–336, 1999.

[19] Henry Schneiderman and Takeo Kanade. A statistical method for 3d object detection
applied to faces and cars. IEEE Conference on Computer Vision and Pattern Recogni-
tion, page 1746, 2000.

[20] Jamie Shotton, Matthew Johnson, and Roberto Cipolla. Semantic Texton Forests for
Image Categorization and Segmentation. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–8, 2008.

[21] Michael Sipser. Introduction to the Theory of Computation. International Thomson
Publishing, 2005.

[22] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple
features. Computer Vision and Pattern Recognition, IEEE Computer Society Confer-
ence on, 1:511, 2001.

[23] Jianguo Zhang, Marcin Marszalek, Svetlana Lazebnik, and Cordelia Schmid. Local
features and kernels for classification of texture and object categories: A comprehen-
sive study. International Journal of Computer Vision, 73(2):213–238, 2007.


