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Abstract

In this paper we address the problem of time based activity inference in unsupervised
manner for an area under surveillance. We use a Latent Dirichlet Allocation based model
that captures the activities and how they change over time. We use agglomerative cluster-
ing on optical flow vectors to code direction and spatial information. In this model each
activity is associated with not only a mixture distribution over these cluster occurrences
but also on the distribution over timestamps of their occurrences. Our method thus helps
in determining the prominence and the correlation of activities over a period of time.

1 Introduction

Understanding and analyzing activities has been the central problem in the area of surveil-
lance. Research over the past few decades has led to a variety of useful methods to model and
detect activities. Most of these approaches rely on detecting and tracking objects throughout
a scene and use the tracked motions to model activities [4]. The advantage of tracking is
that it inherently separates activities of one object from another. In crowded videos or poor
quality videos it is difficult to track objects; usually only low level features can be com-
puted. Latent topic models have recently been applied to alleviate this problem by modeling
activities as hidden variables termed as topics.

The Probabilistic Latent Semantic Analysis (pLSA) [3] model was initially proposed for
extracting semantically meaningful topics of linguistic words in text documents. Basic prin-
ciple behind pLSA and other topic models is to discover co-occurrence patterns of words in
a collection of documents. Several topic models, such as pLSA [3], Latent Dirichlet Alloca-
tion (LDA) [1] and Hierarchical Dirichlet Process (HDP) [8] have been applied to discover
activities in videos for different scenarios. In these models, activities are distinguished from
each other by their differing probability distribution over observed low level features.

However, activities do not just have static co-occurrence patterns among features. Ac-
tivities are localized in time and may have relevance only for a certain period. For example
in a surveillance system for banks it may be perfectly normal to discover usual activities
near the safety vault during daytime, the discovery of same usual activities after office hours
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is suspicious. An activity may also overlap or non-overlap with some other activities. For
example, in a rail road crossing, the activity of train passing over the track and people cross-
ing the track is mutually exclusive. Discovery of these two activities at the same instance
is alarming. Topic models employed so far do not incorporate the dynamic time dependent
nature of activities. In this paper, we focus on discovering the time-dependent behavior of
activities using a Latent Dirichlet Allocation (LDA) Model.

We consider videos of crowded scenes where a host of problems like occlusions, object
view changes and different object shapes make tracking difficult. In order to capture activity
features we rely on local motion features, computed using optical flow. These features can
be easily and reliably computed for crowded scenes. Since topic models work on documents
and words, we divide a video into clips with a fixed number of frames. These clips are treated
as documents. We use agglomerative clustering of optical flow with centroid coding to quan-
tize the features in a word vocabulary. We also capture the timestamps associated with these
clusters along with their occurrence count to construct document-word matrix. We use Beta
distribution to discover the probability distribution associated with each activity over nor-
malized timestamps. To justify the use of Beta distribution consider a surveillance video of
a suburban railway station. This video will witness a myriad of activities associated with
events such as people catching or alighting from trains, going to commercial establishments,
buying tickets, looking up information and using public facilities. Capturing the time distri-
bution of such activities over a period will lead to the discovery of the rise and fall of activity
prominence and their co-occurrence patterns. These time distributions can have many differ-
ent shapes. They can be narrow and recurring for localized activities happening at specific
times like when people catch or alight from trains, broad and spread for activities that keep
occurring, like people moving regularly near information booths or commercial establish-
ments or bursty for activities associated due to sudden changes, such as change in station
number of train arrival. Hence it is imperative to choose a distribution that can capture va-
riety of shapes like Beta distribution which is a parameterized model that can take versatile
shapes.

The generative process of activities can be thought of as follows: We first choose the pos-
sible number of activities that can occur. Then we choose the distribution of these activities
in each clip by sampling a multinomial distribution from a Dirichlet. For each occurrence of
optical flow cluster we associate an activity by sampling from this multinomial and draw the
cluster representation (direction and location) from a per activity multinomial distribution
conditioned on this activity. Finally, we choose the timestamp of this cluster by drawing
from a Beta distribution conditioned on this activity [10]. To infer the values of parameters
of these distributions, we present a new Variational Bayes algorithm.

The rest of paper is organized as follows: In section 2, we briefly comment on some
related works. In section 3.1, we describe the low level features we use for generating the
word-document matrix for a given video clip. In section 3, we use LDA model to discover
activities from this matrix. In section 4, we describe the LDA model used to incorporate
timestamps to determine time distribution. We also describe the variational Bayes inference
algorithm and use it to infer the parameter values. We present the results on some real life
data sets in section 5 and conclude in section 6.

2 Related Work

The approaches employed for activity discovery and analysis in visual surveillance can be
broadly classified in two categories. In the first approach, features of interest are detected
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and tracked. The tracks are then used to model activities. This modeling can be done in
a supervised fashion. Among the supervised learning methods one method is to learn and
classify basic events, such as “left-turn", “stop"”, “exit", and then model complicated activi-
ties using these basic units [4]. Other approaches use statistical models to learn from tracks.
Coupled HMMs [2], Bayesian networks and ballistic dynamics [9] are some of the models
that have been researched. These methods do not work well when they fail to detect and track
the features of interest, for example in crowded scenes. The second approach directly uses
low level features instead of tracks as the description of video. Methods using this approach
avoid the pitfalls of detection and tracking, however, these methods do not scale when many
activities simultaneously occur in the video. They can deal with only one activity occurring
at a time and thus can detect only the whole video sequence as normal or abnormal.

Recently topic models have been used to model behavior correlations within and across
video clips represented as documents. Probabilistic semantic analysis (pLSA) [3] has been
used for extracting object categories [5] and recognizing object actions in an unsupervised
manner [7]. LDA and Hierarchical Bayesian models [11] have also been used to group low-
level motion features into topics to discover activities. A Hierarchical pLSA [6] has been
proposed to incorporate semantic scene representation to model global and local behavior
patterns. However these models do not incorporate timestamps associated with the occur-
rence of activities. Our work is different from these models in which we treat time as an
observed continuous variable like word occurrences. This also avoids the problem of time
discretization. Our model essentially learns the co-occurrence patterns of activities over
time, without labeling different activities at different points of time.

3 Latent Dirichlet Allocation

Before describing the incorporation of time in Latent Dirichlet Allocation model let us re-
view the basic LDA model. The graphical model for LDA is shown in Figure 2. LDA models
a document corpus consisting of M documents. Each document in this corpus is modeled
as a mixture of K topics, where K is known a priori. In its generative process, for each
document d having N; words, a multinomial distribution 6, is randomly sampled from a
Dirichlet distribution with parameter «. To generate the i-th word in the document, first a
topic zg4; is chosen from this multinomial distribution and then a word wy; is generated by
randomly sampling from a topic specific multinomial distribution f3, over the vocabulary V.
In this model 6, and z,; are the hidden variables and o and 3 are the hyper parameters to be
optimized. For given a and 3 the joint probability distribution of clusters, wq, and activities,
zq, for a clip is given by

Ny
P(Wa, 24,04, B) = p(6ala) [ | p(2ail600) p(Wailzai B)-
=1

Unfortunately since the marginal likelihood p(wq|a, B) is intractable, the posterior dis-
tribution p(6,,z4/a,B) is also intractable. Therefore, a variational Bayes inference algo-
rithm [1] is used to approximate the posterior distribution p(6,,zq|@, B) using free varia-
tional parameters. This distribution is given by

Na’
(04,24l 0a) = q(6al¥a) | | 4(2ail @ai)
i=1
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Figure 1: Example of visual words obtained for video sequences

Here, 7, are variational Dirichlet parameters and ¢,; are variational multinomial parameters.
In the next section we present an approach to construct document word matrix for videos
having crowded scenes.

3.1 Visual Words

We are working with surveillance video streams of public places recorded by a fixed cam-
era. Processing this data is challenging because of object occlusions, lightening changes
and different object types. We divide the complete video into M clips having fixed number
of frames. These clips correspond to documents. Since tracking is unreliable for these sit-
uations we use optical flow features for computing visual words. In order to detect areas
having cohesive motion we cluster these optical flow vectors. We first capture the directional
cohesiveness by first clustering based on direction. All the vectors belonging to a particular
direction cluster are then further clustered based on their location. Finally we prune clus-
ters which do not have enough number of features. The clusters which survive pruning are
treated as words w;. These words come from a fixed size vocabulary V. The vocabulary
is constructed by dividing the frame (320 x 280) into fixed size (10 x 10) cells. The di-
rection (4) and location (centroid) of cluster (32 x 28) is thus coded with a word from this
vocabulary (32 x 28 X 4).

We use agglomerative clustering because the number of clusters is not required a priori.
In agglomerative clustering clusters are generated by using a threshold on the distance metric.
The threshold in our case translates to the maximum permissible distance between motion
clusters thus allowing us to ensure that local motion features of different close by objects are
not merged together. Figure 1 shows examples of clusters obtained for our video sequences.
The distance threshold used is the same in all the clips which results in variable number of
clusters. The clusters obtained for different directions are shown in different colors. In next
section we describe how LDA model over time is used for discovering activities in video
sequences.

4 Time LDA

The LDA model described in the previous section takes cluster co-occurrences into account
but do not account for temporal information associated with these clusters. By incorporating
normalized timestamps of these clusters one can model the long range dependencies of activ-
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Figure 2: Graphical Representation of Topic Models (a) LDA (b) Time LDA

O

ities over time. This is useful to predict activity probability for a given time. One possibility
is to discretize time and find the activities within these discrete ranges. Activities discovered
in the time range depicts where they are dominant. Unfortunately it is very difficult to chose
granularity of time slice which is suitable for all activities. The time slice chosen may be too
large for some activities or too small for others. In order to avoid this problem we associate
a continuous distribution over time for each activity [10]. The parameterized distribution
chosen for time is Beta distribution, which defines a probability distribution over a normal-
ized time range from O to 1. The generative model for timestamps and clusters of clips is as
follows:

1. For each clip d, draw a multinomial distribution 6, from a Dirichlet prior «.

2. For the i-th cluster, wy; inclip d (where i =1,...,Ny ):
(a) Draw a activity z;; from the multinomial 6,.

(b) Draw a cluster wy; from p(wg;|z4i, B), a multinomial distribution conditioned on
activity zg;.

(c) Draw a timestamp ?4; from a Beta distribution ;.

The graphical model representation for this model is shown in figure 2. As can be seen
from the above generative process the posterior distribution of activities depends on both,
the clusters that represent the activities and the time when they occur. In this model both
the clusters and the timestamps are the visible variables whereas 6; and z;; are the hidden
variables. The hyperparameters are &, 3 and y. Given these hyperparameters the joint
probability distribution of clusters, activities and timestamp occurrences for clip d is given
by

p(Wa,ta,za,04|a, B, ¥) = p(64]0t) p(za|04) p(ta|za, v) p(Walza, B)

Ny
p(Wa,ta,za, 640, B, v) = p(6ale) [ | p(zail 0a) p(tail Weyy) P (Wailzais B)

i=1

Like LDA, here too exact inference cannot be done because computing the marginal like-
lihood p(wq,tq|c, B, ) is intractable. Therefore, we propose a variational Bayes infer-
ence algorithm to approximate the posterior distribution p(6,,zq4|, B, ). In section 4.1 we
present the algorithm to compute the variational parameters and in section 4.2 we present the
algorithm to compute the hyperparameter for time.


Citation
Citation
{Wang and McCallum} 2006


6 STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES

4.1 Variational Inference

If we drop the explicit notation showing the dependence on the clips, the marginal log like-
lihood for a clip is given by

log p(w.t/at,B.y) =log [ ¥ p(w.t.8.2la.B.y).
) Z

This probability can be bounded using Jensen’s inequality of concave functions for some
variational probability distribution ¢(-). The free variational parameters are the Dirichlet
parameter ¥ and the multinomial parameter ¢.

0
log p(w,t|a, B, y) = log /Z 1!7(w;1t(,(9 aZZL/O‘(’bl;’W) -q(0,2|7,9)
o ° ) )

q(6,z]y,9)

We show in Appendix 7.1 that using Variational Bayes, log p(w,t|a, B, ) can be approx-
imated by maximizing the lower bound on this probability with respect to ¥y and ¢. Max-
imizing the lower bound minimizes the KL divergence between the variational posterior
probability and true posterior probability. Hence the set of variational parameters y* and ¢*
that minimize the KL divergence

' w7t767z a’ )
> [ Y a(6.417.6) log 451DV
) Z

(}’*7¢*) = argminyAd,D(q(G,zW,(z))Hp(w,t,9,z|a,ﬁ, v)),

is obtained by computing the derivative of lower bound and setting them to zero. Doing so
we obtain the following update equations for variational parameters for each clip given n-th
cluster and i-th activity

N
y=0it+ Y ou )
n=1
k
Oni o< Biw, exp{¥ (%) =W () %)) + Warlogt, + Waalog(1 —1,)} )
j=1

Here W is the digamma function and y;, y;, are the Beta distribution parameters.

4.2 Hyperparameter estimation

Given a surveillance video V divided into M clips with each clip d represented by wq clusters
observed at normalized times tq, we wish to find the parameters o, 8 and y that maximize
the log likelihood of observing the clusters and their timings in this video.

M
l(“»ﬁ?‘/’) = Z Ing(Wd,td|OC,ﬁ,l[/).
d=1

As stated earlier p(wq,tq|a, B, ) cannot be computed tractably and hence we use varia-
tional inference algorithm to bound the log likelihood. For this we use an alternating varia-
tional EM algorithm that maximizes the lower bound for fixed variational parameters y and
¢. The maximization for o and f is identical to LDA [1]. The derivation of y is given in
Appendix 7.2. This yields the following iterative algorithm
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Figure 3: Activities discovered along with their time distribution. (i) The actual pedestrian
and traffic flow paths (ii)-(vii) The discovered activities, arranged in the order they are ob-
served in time.

1. For every clip d, find the optimal values for the variational parameters, y; and y; for
fixed hyperparameters, as described in section 4.1. This is the E-step.

2. Maximize the bound on log likelihood with respect to @, B and y for fixed variational
parameters. This is the M-step.

The two steps are repeated alternatively until the log likelihood converges. The M-step for 3
can be computed analytically [1], whereas the M-step for o and y uses an efficient Newton-
Raphson method.

5 Experimental Results

We evaluated the performance of this model using video data from a busy traffic intersection
which is controlled by four traffic lights. The traffic data is a far field video at 10 frames
per second with a frame size of 320 x 210. The total number of frames used is 43000 (i.e.
4300 non-overlapping clips where each clip is of 10 frames). This results in a vocabulary
size of 2688 words. The number of unique clusters discovered were 367. The time taken
for a complete traffic signal cycle is considered to be an epoch. All the timestamps of the
clusters are drawn from the time range of this epoch. The actual timestamps are offset and
normalized between 0 and 1 with respect to the beginning of the epoch. Clusters and their
normalized timestamps are considered for several cycles. Figure 3 (i) shows some of the
paths which the vehicles can take either freely (4, i) or guided by traffic signals (a to g).
Besides vehicle movement there are pedestrian movements (1, 2). We expect that paths that
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are taken freely (A, i,1 ,2) will contribute to broad time distribution whereas those paths
which depend on traffic signalling (a to g) will tend to have narrow time distribution since
they will be more localized in time. We show the result of training our model in figure 3
(ii - vii) where we have set K = 11. We plotted the cluster co-occurrences for some of the
activity clusters. The centroid of the cluster discovered are marked in blue. We have also
plotted the activity-dependent time distribution obtained for these activities. The activities
have been arranged in the order in which they occur in one cycle of time in the video.

As can be seen, the time distributions have correctly discovered the ordering of activities
on the time axis. Activities which tend to happen earlier in the cycle have a higher probability
of occurring earlier, whereas, activities that happen later have a right sided distribution. Any
deviation from the discovered order can be flagged as unusual. The activity shown in figure
3 (ii) occurs when the traffic starts flowing in direction a and b. The time distribution for
this activity states that the probability of seeing motion in direction a and b is highest at the
beginning (time starts when the first traffic light goes green). The motion in b is divided
into two separate activities (ii and iii) because it co-occurs with a and c. Therefore, the time
distribution for these activities have overlapping time range.

Apart from the controlled traffic pattern there are other pedestrian motions and free turns
which are also discovered in these activity patterns. Surprisingly, these uncontrolled motions
also have time dependent behavior. The probability of pedestrian motion 1 and 2 is highest
in the normalized time range of 0.5 to 0.7 and co-occurs with motion e and some portion of
motion d. This is the reason why activity in (vi) have a broader time distribution whereas
activity (v) have a narrower distribution because (vi) is trying to accommodate the time
dependence of d and to some extent of 2. The free turns also exhibit temporal dependence.
The free turn shown by i occurs only in activities (iii) and (iv) which comprises of flows
b and c. This can be explained by the fact that at all other times the road carries traffic of
flows a, e which inhibits people from using i. The time distribution of activity (iv) is broad
because it captures the time dependence of flows ¢ and i. The free turn / and i is observed to
be used only at the start of flow f. This is because the bulk of traffic waits to take direction
f which prevents the flow in direction 4 and i. Therefore time distribution of activity (vii)
captures the time dependence of f, & which tend to co-occur. The presence of the start of
flow i contributes to the long tail in left direction of the distribution.

6 Conclusion

In several surveillance applications like train stations, banks, traffic etc, there can be specific
time distributions associated with some activities. Our motivation in this paper was to de-
velop a framework that mines these activities from poor quality crowded videos, determines
their time distributions, and extracts any hidden time dependencies about the activities. To
overcome the problems associated with crowded scenes we use an agglomerative clustering
approach that works reliably on low level motion vectors. We present an efficient variational
inference algorithm to model the time distribution of these activities with LDA. We validated
our method on real life traffic video. Our method can determine the prominence and the cor-
relation of activities over a period of time. It can also adapt with the evolution of activities
over time. Discovering this information can be used in a variety of ways like Egress plan-
ning, security management, facility management and discovering hotspots prominence over
time.
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7 Appendix

In this section we present additional derivations that are required for capturing activity de-
pendent time distributions.

7.1 Variational Multinomial

Finding a tight bound on posterior probability distribution will require maximizing
L(y,¢; 0., B, y) [1] which is given by

L=E,[log p(6|a)] +E4[log p(z|0)] + E4[log p(t|z, w)] + E,[log p(w|z, B)]
—Ey[log q(8)] — Ey[log q(2)].

Specifically, the expectation of timestamps for document d is given by,
Ng

Ey[log p(tlz, w)] = Y E,llog p(tan|zan, W)]

n=1

S

K
= Z <¢mlog F ll/zl + ‘/’12) + (bmlOg F(th)

n=1i=1

Onilog T(Wi2) + 0niyin logt, + @iy log (1ftn))

Here ¢,; is the probability that n-th word is generated by topic i(= z4,). By taking all the
other terms containing ¢,,; [1], adding Lagrange multipliers, and then taking derivative with
respect to ¢,; we get

Ly, = ¢ni(¥ () —¥( §:1 Yi)) + nilogBiv — 9nilogdni + Pui Wi logt,+
¢niWi210g<1 - tn) + ¢ni10gr(wil + lI’i2) - (Pni]OgF(Wil) ¢m]0gr( lI/12) + M(Zl 1 (Pm )

aa¢ii =¥(y) - ‘P(lezl ¥j) +10gBi —logdn — 1+ yinlogt, + yinlog(1 —1,)+
logl'(yin + Wi2) — logl (i) —logl'(yi2) + A

Setting this derivative to zero will give the value of variational parameter ¢,; that maximizes

L, and is given by

~

ﬁ,vexp{ Z + yirlogt, + wiplog(1 — tn)} 3)

7.2 Conditional Beta distribution

The model parameters that maximize the intractable log likelihood over all documents can
be determined by considering variational lower bound in place of marginal log likelihood.
Therefore, collecting the terms containing y;;(j = 1,2) in L and taking the derivative with
respect to ;;. we get

M Ny K

b= 33 S o <1ogr ¥ v zlogr Vi) Y. wio zn,>

=1n=1i= j=1
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M Ny M Ny
a - Z Z ¢dm Z Wll le + Z Z (Pdm'l()g Inj
Yij d=1n=1

d=1n=

Because of the coupling between y’s the equation has to be solved in an iterative manner
using Newton Raphson method. The gradient is given by

&71‘ — ):214:1 Z ¢dm (lP/( r=1 lI/Ir) - /(llllj)) forj =1
;Y M XN Gan® (T2 W) forj # 1

i.e., for Vi,

[\S]

oL
——=-4 K+ KW ( 2 ; 4
alllljalllll ( ) (llll ~ Wl ( )

where K' = Y ¥ ¢,,;. This is in a Hessian form H' = K'(diag(h) + 1z17) where the
Jj-th diagonal element is h’] = -9 (y;;).K and z = ‘P’(ZJ 1 ¥ij).K". This avoids the costly
matrix inversion operation and can be solved efficiently in an iterative manner.
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