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Abstract

Gait is characterised by the relative motions between different body parts during
walking. However, most recently proposed gait representation approaches such as Gait
Energy Image (GEI) and Motion Silhouettes Image (MSI) capture only the motion inten-
sity information whilst ignoring the equally important but less reliable information about
the direction of relative motion. They thus essentially sacrifice discriminative power in
exchange for robustness. In this paper, we propose a novel gait representation based on
optical flow fields computed from normalized and centred person images over a complete
gait cycle. In our representation, both the motion intensity and the motion direction in-
formation is captured in a set of motion descriptors. To achieve robustness against noise,
instead of relying on the exact value of the flow vectors, the flow direction is discretised
and a histogram based direction representation is formulated. Compared to the existing
model-free gait representations, our representation is not only more discriminative, but
also less sensitive to changes in various covariate conditions including clothing, carrying,
shoe, and speed. Extensive experiments on both indoor and outdoor public datasets have
been carried out to demonstrate that our representation outperforms the state-of-the-art.

1 Introduction

Gait is concerned with how people walk and can be characterised by the relative motions
between different body parts during walking. However, most recently proposed gait repre-
sentation approaches [1, 5, 10, 11, 14] focus solely on the motion intensity information. This
is mainly because that although the relative motion direction is useful for representing gait, it
is also more difficult to capture and less reliable. In particular, during a walking cycle, whilst
the whole body is moving towards one direction, multiple independent motions also co-exist
across different body parts. Furthermore, these independent motions constantly change in
both direction and magnitude. One possible solution to this is to adopt a model based ap-
proach [8, 12, 15, 21] which models the human body configuration (e.g. 2D/3D skeletons)
and the model parameters estimated over time encode the detailed relative motion infor-
mation. Nevertheless, model-based approaches are sensitive to image noise, self-occlusion,
shadows, and view changes, which leads to inferior performance on public gait datasets
[5, 10, 11].
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In this paper we propose a novel gait representation approach which captures both the
intensity and direction information about the relative motions between body parts, and crit-
ically is robust to noise. More specifically, optical flow fields are computed for centred and
normalised human figures extracted from a complete gait cycle. In order to extract robust gait
features from the noisy optical flow field, we do not rely on the exact values of the magnitude
and direction of the flow vectors. Instead, the flow direction is discretised and a histogram
based direction representation is formulated, which gives rise to a set of spatio-temporal
motion descriptors. In particular, our gait representation consists of a Motion Intensity Im-
age (MII), which measures the intensity of relative motion at each pixel location, and four
Motion Direction Images (MDIs), each of which represents the likelihood of the direction
of motion being along one specific motion direction during a complete gait cycle. These
motion images are then fused together during recognition.

Compared with existing model free approaches [1, 5, 10, 11, 14], our representation are
more descriptive as more comprehensive motion information is captured. In addition, the
fusion of both motion intensity and direction information makes our representation more
robust to various covariate conditions that affect gait. Generally speaking, there are two
types of covariate conditions: conditions that affect the shape appearance of human figure
such as carrying and clothing conditions, and conditions that affect gait itself including shoe-
wear type, surface and time. Similar to existing binary cumulative motion images such as
Gait Energy Image (GEI) and Motion Silhouettes Image (MSI), our MII is less sensitive to
covariates that affect gait itself. Our MDIs, on the other hand, capture little shape appearance
information; they are thus less sensitive to shape appearance related covariates. A fusion of
both MII and MDIs makes our representation insensitive to changes in both types of covariate
conditions.

We perform extensive experiments using the CASIA [20] and Soton dataset [17] which
contain both indoor and outdoor gait sequences to validate the effectiveness of our repre-
sentation against the state-of-the-art. The results indicate that our flow field based gait rep-
resentation outperforms existing alternatives, especially when there are changes in various
covariate conditions.

1.1 Related Work
The idea of extracting gait features from optical flow fields has been exploited before in the
late 90’s [7, 13]. Little and Boyd [13] represent the distribution of each flow field using
moments and the periodic structure of the flow distribution features is then exploited for
gait representation. Treating the optical flow fields as spatial patterns, the extracted holistic
features are weak in discriminative power for an intra-class object recognition task such as
gait recognition, although they have been shown to be very useful for inter-class recognitions
(e.g. action recognition [4, 18]). Instead of extracting holistic features, Huang et al. [7]
proposed to use the magnitude of flow vectors directly as templates. These templates are
then projected to a low dimensional canonical space for recognition. However, the useful
motion information is neglected. In addition, relying on the exact value of the flow vector
magnitude makes their representation sensitive to noise.

A number of approaches have been proposed recently to separate the motion and static
shape appearance information in gait representation. In [10] Motion Silhouette Contour
Templates (MSCT) and Static Silhouette Templates (SST) are formulated for representing
the two types of information. On a similar note is the fusion of shape and kinematics features
[3]. In both approaches, the shape features used are less discriminative for gait representa-
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tion and prone to changes in appearance related covariate conditions such as clothing and
carrying. As for the motion features, the MSCT does not contain motion direction infor-
mation; although those kinematics features in [3] do, they have to be extracted based on a
human body configuration model. In contrast, the proposed MII contains both motion inten-
sity and shape appearance information whilst the MDIs are concerned solely with the motion
direction information. Also, both MII and MDIs are robust to noise and easy to compute.
More importantly a fusion of both makes our representation insensitive to various covariate
condition changes.

2 Gait Motion Descriptors
Given a gait sequence, a figure-centric optical flow field is computed for each frame. This
is followed by gait cycle segmentation, and computation of our gait motion descriptors for
each cycle.

2.1 Computing Figure-centric Optical Flow Fields
A figure-centric spatio-temporal volume for each walking person is first extracted. To this
end the walking person needs to be segmented from each image frame. This is achieved by
background subtraction. Connected component algorithm is then applied to the segmented
foreground regions and a silhouette image of the person is obtained. The silhouettes extracted
from the sequence are used for two purposes: 1) They are used as the foreground masks to
extract the original images of the person, which are then centred and normalised to a standard
width and height to generate the figure-centric spatio-temporal volume. 2) The silhouettes
are also used to extract gait cycles via the maximum entropy estimation [16] in the lower half
of the silhouettes. An example of normalized silhouette and the corresponding figure-centric
original image of the walking person from a carrying-bag sequence in the CASIA dataset are
shown in Fig.1 (a) and (b) respectively.

(a) Silhouette (b) It−1 (c) It (d) Ft

Figure 1: Computing figure-centric optical flow field. (a) shows the silhouette at frame
t − 1; (b)&(c) are the extracted figure-centric images of the walking person at t − 1 and t
respectively; (d) is the computed optical flow field.

Given a complete gait cycle consisting of T figure centric images {I1, ..,It , ..,IT}, optical
flow fields are estimated for each frame. The flow field for the t−th frame is denoted as Ft
and computed using two consecutive frames It−1 and It . A recently proposed optical flow
estimation algorithm is adopted [2]. In order to alleviate the effect of noise, the flow fields
are smoothed by applying a 3X3 Gaussian filter. An example of the figure centric flow field
is shown in Fig.1 (d).
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2.2 Computing Motion Descriptors
Optical flow fields are inevitably noisy and error-prone due to image noise and self-occlusions.
For intra-class object recognition, extracting robust motion descriptors from noisy flow field
input is crucial. To this end, instead of using the exact values of the flow vectors as in previ-
ous methods [4, 7, 18], we extract very coarse yet informative motion intensity and direction
information by taking the following steps:

1. The flow field F (the subscript t is omitted here for notational simplicity) is decom-
posed into two scalar fields Fx and Fy corresponding to the horizontal and vertical
components of the flow. The two scalar fields are further decomposed into four
non-negative fields denoted as F+

x , F−x , F+
y , and F−y . In particular, at pixel location

(i, j), if Fx(i, j) > 0, we have F+
x (i, j) = Fx(i, j) and F−x (i, j) = 0; otherwise we have

F+
x (i, j) = 0 and F−x (i, j) = −Fx(i, j). Similarly F+

y , and F−y are obtained from Fy.
Note that the direction of flow vector will become extremely unreliable when the flow
magnitude is small. Therefore, if the magnitude ‖F(i, j)‖ is less than 1 pixel, all four
non-negative fields at that pixel location are set to zero.

2. The four non-negative flow fields are discretised into binary images and denoted as
F̂+

x , F̂−x , F̂+
y , and F̂−y . This is because the exact values of these non-negative fields are

still too noisy to be trustworthy.

3. Given the 4 binary images obtained from the original flow field for each frame of the
complete gait cycle of T frames, we now compute how the motion intensity and direc-
tion are distributed during the gait cycle. To achieve this, a 5-bin histogram is com-
puted at each pixel location B(i, j) = {BI(i, j),B+

x (i, j),B−x (i, j),B+
y (i, j),B−y (i, j)}.

More specifically, at each frame t, if all of the four flow fields (F̂+
x , F̂−x , F̂+

y , F̂−y )
are zero, BI(i, j) is incremented by one. BI(i, j) therefore counts the total number of
frames in the gait cycle where there is no relative motion at pixel (i, j). The count
in the bin B+

x (i, j) will be incremented if the corresponding binary flow images has a
non-zero value. We therefore have B+

x (i, j) = ∑
T
1 F̂+

x . Similarly we obtain the values
of the other three histogram bins.

4. The 5 histogram bins at each pixel location are normalised by the length of the gait
cycle T , which give rise to 5 motion descriptors used in our approach for gait rep-
resentation. Specifically, from BI(i, j) we obtain the Motion Intensity Image (MII),
denoted as M, which measures the motion intensity distribution over a complete gait
cycle. The other four bins contribute to four Motion Direction Images (MDIs) which
measure the distribution of the motion direction along four directions: right, left, up,
and down, and are denoted as M+

x , M−x ,M+
y , and M−y respectively. The size of the 5

descriptors is identical to that of the figure-centric person image.

An example of the 5 motion descriptors illustrated as grey-level images is shown in
Fig.2. The Motion Intensity Image M is a time-normlised accumulative motion intensity
image with lower value meaning that relative motion occurs more frequently during the gait
cycle. As can be seen in Fig.2, low values are observed at the legs and arms area, whereas
the static areas such as head and torso are represented as high values. Note that our MII is
similar in spirit to the widely adopted Gait Energy Image (GEI) [5], which aims to capture
the same information but termed differently as motion energy. However, since a GEI is
computed using the binary silhouette as opposed to flow fields, the measurement of motion
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(a) M (b)M+
x (c) M−x (d) M+

y (e) M−y
Figure 2: Example of our 5 motion descriptors.

intensity is indirect and less accurate. The four Motion Direction Images give more detailed
information as for how likely relative motions of different directions can take place at each
pixel location during a gait cycle. It can be seen from Fig.2(b)-(e) that, as expected, motions
of different directions have different distributions at different locations. It is also noted that
compared with the other three MDIs, all the high intensity areas in M−y are concentrated
around the two feet. This is not surprising as downwards motion is rare for people walking
on a flat surface. Nevertheless this suggests that the discriminative power of M−y is much
weaker than that of the other three MDIs. Consequently, in this paper only three MDIs are
used for gait representation together with the MII.

Fig.3 shows how different motion descriptors are affected by different covariate condition
changes. It can be seen clearly that the appearance related covariate conditions such as
carrying and clothing have a visible effect on the MII. This is because that the shape of the
low motion-intensity areas in the MII are affected by the shape appearance changes caused
by variations in these conditions. In contrast, Fig.3(b)-(d) indicate that the effect of those
covariate conditions is minimal on the MDIs. Therefore the MDIs are more robust against
shape appearance changes. On the other hand, the MDI would be more sensitive to covariate
conditions such as shoe and surface that affect more on the gait itself. Overall, these two
types of motion descriptors capture complementary information about gait and have different
levels of sensitivity towards different types of covariate conditions. They are therefore fused
together for recognition as described next.

3 Gait Recognition
The four motion descriptors (M, M+

x , M−x , M+
y ) are used independently for computing the

dis-similarity between the gait sequences of a probe subject and a gallery one. The dis-
similarity scores are then fused for matching the two subjects. Instead of using the descrip-
tors directly as templates, they are projected to a subspace for dimensionality reduction. This
is achieved using Component and Discriminant Analysis (CDA) based on Principle Compo-
nent Analysis and Multiple Discriminant Analysis to simultaneously achieve a good data
representation and class separability [6]. The Euclidean distance of the descriptors in the
CDA subspace is used to measure the dis-similarity between two subjects.

Once the dis-similarity scores have been computed for each of our four motion descrip-
tors, they are fused together as follows. First, the dis-similarity scores need to be normalised
as they fall into different value ranges. In particular, dis-similarity score for each descrip-
tor is normalised by the averaged dis-similarity score between two different subjects in the
training dataset. After normalisation, the final similarity score used for template matching is
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(a) M (b)M+
x (c) M−x (d) M+

y

Figure 3: Effect of different covariate conditions on our motion descriptors. Top row: normal
condition; middle row: the same person carrying a bag; bottow row: the same person wearing
a bulky coat.

obtained as:
D = λDM +(1−λ )(DM+

x
+DM−x +DM+

y
) (1)

where DM,DM+
x
,DM−x ,DM+

y
are the normalized dis-similarity score obtained using our gait

descriptors, and λ is the fusion weight.

4 Experiments

4.1 Datasets and Settings

Two datasets, the CASIA and Soton datasets, were used for experiments which cover both
indoor and outdoor scenarios and are amongst the most comprehensive public gait datasets.
The CASIA gait dataset [20] captures gait video sequences in an indoor environment. The
dataset consists of 124 subjects. For each subject there are 10 walking sequences consisting
of 6 normal walking sequences where the subject does not carry a bag or wear a bulky
coat (CASIASetA), 2 carrying-bag sequences (CASIASetB) and 2 wearing-coat sequences
(CASIASetC). Each sequence contains multiple gait cycles. The original image size of the
database is 320x240. We used 4 of the 6 normal sequences as the gallery set and the rest of
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the sequences in set CASIASetA (CASIASetA2) were used as the probe set together with
CASIASetB and CASIASetC.
The Soton Large dataset is part of the Soton database [17]. It contains 116 subjects cap-
tured in both indoor and outdoor environment. The dataset has 6 subsets, SotonSetsetA to F.
In our experiments the most widely used SotonSetsetA and SotonSetsetE were used. Soton-
SetsetA was captured in a controlled indoor environment whilst SotonSetsetE was captured
outdoor with objects moving in the background thus closely resembling a real-world ap-
plication scenario. Both SotonSetsetA and SotonSetsetE are featured with people walking
under unchanged normal conditions. For both SotonSetsetA and SotonSetsetE, half of the
sequences for each subject was used as the gallery set and the rest as probe set.
The Soton Small dataset consists of 11 subjects captured indoor under various covariate
condition changes. Those covariate conditions include clothing condition (e.g. heavy/light
clothes), carrying condition (e.g. carrying/without carrying bags), shoe (e.g. boots/trainers)
and speed (quick/slow). In particular, for each subject there are two sequences under normal
conditions (SotonSmallSetA), 3 carrying-bag sequences (SotonSmallSetB), 2 wearing-coat
sequences (SotonSmallSetC), 5 sequences with different shoes (SotonSmallSetSh), and one
sequence each for slower and quicker walking (SotonSmallSetS). We use one of the normal
sequences from SotonSmallSetA as the gallery set. The other normal sequence (SotonS-
mallSetN) and all other subsets were used as the probe set. Both the Large and Small Soton
datasets were captured at standard PAL resolution.

The size of normalized figure-centric images for all datasets was set to 128x88. For all
experiments, the results obtained using λ = 0.5 (see Eqn. 1) are reported. The effect of
different values of λ is also investigated.

4.2 Comparative Evaluation

Probe Set TM GEI M M+
x M−x M+

y Fusion
CASIASetA2 97.6% 99.4 99.4% 96.3% 84.9% 93.4% 97.5 %
CASIASetB 52.0% 60.2% 56.6% 57.3% 32.8% 46.7% 83.6%
CASIASetC 32.7% 30.0% 14.8 50.9% 29.1% 24.6% 48.8%

Overall 60.2% 62.8% 56.7% 68.2% 48.9% 54.9% 76.6%

Table 1: Results on the CASIA dataset. The proposed descriptors are compared with a
template matching method in [20] and GEI [5].

Results on CASIA dataset - Table 1 shows the recognition rates obtained using the 4 dif-
ferent motion descriptors and the fusion result. The results shows that when there is no
change in the covariate conditions (CASIASetA2) Motion Intensity Image (MII M) gives
slightly better results than the three Motion Direction Images (MDIs M+

x ,M−x ,M+
y ). When

the shape appearance related covariate conditions change in the probe set (CASIASetB and
CASIASetC), the opposite is observed. In particular, M+

x achieves better result than the
other three descriptors when used alone. It can also be seen in Table 1 that the fusion result
is better than each descriptor alone or close to the best. Overall, considerable improvement
can be obtained by fusing all 4 descriptors together. We also compare our results with those
obtained using existing methods in Table 1. A single descriptor in our approach can achieve
comparable results whist the fusion result is significantly higher than those of the alternative
methods, particularly when there are changes in covariate conditions.
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Probe Set M M+
x M−x M+

y Fusion
SotonSetA 99.1% 96.5% 96.5% 93.1% 99.1%

Table 2: Results for our descriptors on SotonSetA.

Probe Set MSI Frieze SVB Frieze MSCT+SST GEI Fusion
SotonSetA 84.8% 96.0% 84.0% 84.0% 99.1% 99.1%

Table 3: Comparison with existing approaches including MSI [9], Frieze Patterns [14], SVB
Frieze Patterns [11], MSCT+SST [10] and GEI on SotonSetA.

Probe Set Wagg and Nixon [19] M M+
x M−x M+

y Fusion

SotonSetE 67.0% 100% 93.1% 93.9% 93.9% 97.4%

Table 4: Results on the outdoor SotonSetE.

Results on Soton Large dataset -The results obtained on the indoor SotonSetA using the
proposed motion descriptors are reported in Table 2. Our result based on fusing the 4 motion
descriptors is also compared with the results reported in the literature in Table 3. Again,
under the same covariate condition, both the MII and the fusion give excellent result. Com-
pared with alternative approaches, both our approach and GEI yield near-perfect result and
outperform the other model-free approaches. Table 4 shows the results on the outdoor dataset
SotonSetE. The result suggests that our motion descriptors are robust to the lighting changes
and moving background presented in the outdoor environment. In particular, our results are
significantly higher than that of Wagg and Nixon [19].

Probe Set GEI M M+
x M−x M+

y Fusion

SotonSmallSetN 100% 100% 100% 100% 100% 100%
SotonSmallSetB 86.3% 76.2% 76.2% 66.7% 61.9% 90.4%
SotonSmallSetC 72.7% 54.6% 81.8% 63.6% 72.7% 90.9%
SotonSmallSetSh 100% 100% 92.3% 82.1% 87.2% 100%
SotonSmallSetS 100% 100% 85.7% 76.1% 76.2% 100%

Overall 94.2% 90.3% 87.3% 77.6% 79.6% 97.1%

Table 5: Results on the Soton Small dataset.

Results on Soton Small dataset -Table 5 shows the results on the Soton Small dataset which
contain changes in shape-appearance related covariates (SotonSmallSetB and SotonSmall-
SetC) and covariates that affect gait itself (SotonSmallSetSh and SotonSmallSetS). It can be
seen from Table 5 that under shape appearance related covariate changes, MDIs give bet-
ter result than MII. However, when the covariate conditions affect gait itself MII achieves
better performance. This result is consistent with our analysis on the characteristics of dif-
ferent descriptors in Sec. 2.2. It is also obvious from the results that the descriptor fusion
result outperforms that of using each descriptor alone. The performance of our descriptors
is compared with GEI and Table 5 shows that our performance is better.
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(a) CASIA (b) SotonSetA

(c) SotonSetE (d) Soton Small Set
Figure 4: Effect of the fusion weight λ . Larger value of λ gives more weight to MII.

4.3 The Effect of the Fusion Weight λ

The results reported so far were obtained by setting the value of the fusion weight λ to 0.5,
i.e. equal weight is given to the MII and the three MDIs. The effect of λ is investigated and
the result is shown in Fig. 4. As can be seen in Fig. 4 when there are covariate changes,
setting the value of λ either too low or too high will lead to worse performance. This is
because that our MII and MDIs contain complementary information and have different levels
of sensitivity towards different types of covariates. Overall, a value of 0.5 seems to be a safe
choice.

5 Conclusion

We have proposed a novel gait representation based on optical flow fields computed from
normalized and centred person images over a complete gait cycle. In our representation,
both the motion intensity and the motion direction information is captured in a set of motion
descriptors. The formulated Motion Intensity Image (MII) and Motion Direction Images
(MDIs) have different levels of sensitivity toward different types of covariate conditions. The
Fusion of them thus gives us a gait representation that is not only more discriminative, but
also less sensitive to changes in various covariate conditions including clothing, carrying,
shoe, and speed. Extensive experiments on both indoor and outdoor public datasets have
been carried out to demonstrate that our representation outperforms the state-of-the-art.
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