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Abstract

RANSAC (Random Sample Consensus) has been popular in regression problem with
samples contaminated with outliers. It has been a milestone of many researches on ro-
bust estimators, but there are a few survey and performance analysis on them. This pa-
per categorizes them on their objectives: being accurate, being fast, and being robust.
Performance evaluation performed on line fitting with various data distribution. Planar
homography estimation was utilized to present performance in real data.

1 Introduction
The various approaches to robust estimation of a model from data have been studied. In prac-
tice, the difficulty comes from outliers, which are observed out of pattern by the rest of data.
Random Sample Consensus (RANSAC) [11] is widely applied to such problems due to its
simple implementation and robustness. It is now common context in many computer vision
textbooks, and there was also its birthday workshop, 25 Years of RANSAC, in conjunction
with CVPR 2006.

There were the meaningful groundwork before RANSAC. M-estimator, L-estimator, R-
estimator [15] and Least Median of Squares (LMedS) [24] were proposed in the statistics
field. They formulate regression with outliers as a minimization problem. This formulation
is similar with least square method, which minimize sum of squared error values. However,
they use nonlinear and rather complex loss functions instead of square of error. For exam-
ple, LMedS tries to minimize median of error values. They need a numerical optimization
algorithm to solve such nonlinear minimization problem. Hough transform [9] was also sug-
gested in the image processing field. It transforms data (e.g. 2D points from a line) from data
space into parameter space (e.g. slop and intercept). It selects the most frequent point in the
parameter space as its estimation, so it needs huge amounts of memory to keep the parameter
space.

RANSAC simply iterates two steps: generating a hypothesis from random samples and
verifying it to the data. It does not need complex optimization algorithms and huge amounts
of memory. These advantages originate from random sampling, which is examined in Sec-
tion 2. It is applied to many problems: model fitting, epipolar geometry estimation, motion
estimation/segmentation, structure from motion mobile, and feature-based localization.
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Numerous methods have been derived from RANSAC and form their family. There has
been a few and old survey and comparison on them [19, 29, 31]. An insightful view of the
RANSAC family is also necessary. They can be categorized by their research objectives:
being accurate, being fast, and being robust (Figure 2). Representative works are briefly
explained in Section 3. Their performance is evaluated through line fitting and planar ho-
mography estimation in Section 4. Concluding remarks and further research direction are
made in Section 5.

2 RANSAC Revisited

RANSAC is an iterative algorithm of two phases: hypothesis generation and hypothesis eval-
uation (Figure 1).

Figure 1: Flowchart of RANSAC

Figure 2: RANSAC Family

Figure 3: Loss Functions

2.1 Hypothesis Generation

RANSAC picks up a subset of data randomly (Step 1), and estimates a parameter from the
sample (Step 2). If the given model is line, ax + by + c = 0 (a2 + b2 = 1), M = [a,b,c]T

is the parameter to be estimated, which is a hypothesis of the truth. RANSAC generates a
number of hypotheses during its iteration.

RANSAC is not regression technique such as least square method and Support Vector
Machine. It uses them to generate a hypothesis. It wraps and strengthens them, which do
not sustain high accuracy if some of data are outliers. RANSAC uses a portion of data, not
whole data. If the selected data are all inliers, they can entail a hypothesis close to the truth.
This assumption leads the necessary number of iteration enough to pick up all inlier samples
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at least once with failure probability α as follows:

t =
logα

log(1− γm)
, (1)

where m is the number of data to generate a hypothesis, and γ is probability to pick up an
inlier, that is, ratio of inliers to whole data (shortly the inlier ratio). However, the inlier ratio
γ is unknown in many practical situations, which is necessary to be determined by users.

RANSAC converts a estimation problem in the continuous domain into a selection prob-
lem in the discrete domain. For example, there are 200 points to find a line and least square
method uses 2 points. There are 200C2 = 19,900 available pairs. The problem is now to select
the most suitable pair among huge number of pairs.

2.2 Hypothesis Evaluation
RANSAC finally chooses the most probable hypothesis, which is supported by the most
inlier candidates (Step 5 and 6). A datum is recognized as the inlier candidate, whose error
from a hypothesis is within a predefined threshold (Step 4). In case of line fitting, error
can be geometric distance from the datum to the estimated line. The threshold is the second
tuning variable, which is highly related with magnitude of noise which contaminates inliers
(shortly the magnitude of noise). However, the magnitude of noise is also unknown in almost
all application.

RANSAC solves the selection problem as an optimization problem. It is formulated as

M̂ = argmin
M

{
∑

d∈D
Loss

(
Err(d;M)

)}
, (2)

where D is data, Loss is a loss function, and Err is a error function such as geometric dis-
tance. The loss function of least square method is represented as Loss(e) = e2. In contrast,
RANSAC uses

Loss(e) =
{

0 | e |< c
const otherwise , (3)

where c is the threshold. Figure 3 shows difference of two loss functions. RANSAC has
constant loss at large error while least square method has huge loss. Outliers disturb least
squares because they usually have large error.

3 RANSAC’s Descendants

3.1 To Be Accurate
Loss Function A loss function is used in evaluating a hypothesis (Step 4), which select the
most probable hypothesis. MSAC (M-estimator SAC) [30] adopts bounded loss of RANSAC
as follows:

Loss(e) =
{

e2 | e |< c
c2 otherwise

. (4)

MLESAC (Maximum Likelihood SAC) [30] utilizes probability distribution of error by inlier
and outlier to evaluate the hypothesis. It models inlier error as unbiased Gaussian distribution
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and outlier error as uniform distribution as follows:

p(e|M) = γ
1√

2πσ2
exp
(
− e2

2σ2

)
+(1− γ)

1
ν

, (5)

where ν is the size of available error space. γ is prior probability of being an inlier, which
means the inlier ratio in (1). σ is the standard deviation of Gaussian noise, which is common
measure of the magnitude of noise. MLESAC chooses the hypothesis, which maximize like-
lihood of the given data. It uses negative log likelihood for computational feasibility, so the
loss function becomes

Loss(e) =− lnp(e|M) . (6)

Figure 3 shows typical loss function of RANSAC, MSAC, and MLESAC, which are quite
similar. RANSAC does not consider the amount of error within bounded threshold, so it has
worse accuracy than other two methods. MAPSAC (Maximum A Posterior Estimation SAC)
[28] follows Bayesian approach in contrast to MLESAC, but its loss function is similar with
MSAC and MLESAC since it assumes uniform prior. pbM-estimator (Projection-based M-
estimator) [25] attempted non-parametric approach in contrast to the parametric error model
(5).

Local Optimization Local optimization can be attached at Step 5.5 or 7.5 to improve
accuracy. LO-RANSAC (Locally Optimized RANSAC) [8] adds local optimization at Step
5.5. Chum reported that inner RANSAC with iteration was the most accurate among his
proposed optimization schemes. He also proved that computation burden is increased logN
times than RANSAC without it, where N is the number of data. pbM-estimator adopts com-
plex but powerful optimization scheme at Step 5.5. To use pbM-estimator, the given prob-
lem should be transformed into EIV (Error-in-Variables) form as follows:

yT
i θ −α = 0 (i = 1,2, · · · ,N) . (7)

In case of line fitting, yi is [xi,yi]T , θ is [a,b]T , and α is −c. The given problem becomes an
optimization problem as follows:

[
θ̂ , α̂

]
= argmin

θ ,α

1
N

N

∑
i=1

κ

(yT
i θ −α

s

)
, (8)

where κ is M-kernel function and s is bandwidth. Two methods are utilized to find θ and α:
conjugate gradient descent for θ and mean-shift for α . The optimization scheme can find θ

and α accurately although the initial estimation is slightly incorrect.

Model Selection Model selection can be incorporated with RANSAC, which makes rea-
sonable estimation even if data are degenerate for the given model. Torr proposed GRIC
(Geometric Robust Information Criterion) [28] as fitness measure of models. It takes ac-
count of model and structure complexity. GRIC presented higher accuracy than AIC, BIC,
and MDL, whose experiment was incorporated with MAPSAC. QDEGSAC (RANSAC for
Quasi-degenerate Data) [12] has model selection step after Step 8. The model selection
step has another RANSAC for models which need less parameters than the given model. It
does not require domain-specific knowledge, but it uses the number of inlier candidates for
checking degeneracy.
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3.2 To Be Fast
Computing time of RANSAC is

T = t(TG +NTE) , (9)

where TG is time for generating a hypothesis from sampled data, TE is time for evaluating
the hypothesis for each datum.

Guided Sampling Guided sampling can substitute random sampling (Step 1) to accel-
erate RANSAC. Guidance reduces the necessary number of iteration, t in (9), than random
sampling. However, it can make RANSAC more slower due to additional computation bur-
den, and it can impair potential of global search. Guided MLESAC [27] uses available cues
to assign prior probabilities of each datum in (5). Tentative matching score can be used
as the cues in estimating planar homography. PROSAC (Progressive SAC) [6] uses prior
knowledge more deeply. It sorts data using the prior knowledge such as matching score. A
hypothesis is generated among the top-ranked data, not whole data. PROSAC progressively
tries less ranked data, whose extreme case is whole data. In contrast to Guided MLESAC
and PROSAC, NAPSAC (N Adjacent Points SAC) [20] and GASAC (Genetic Algorithm
SAC [23] do not use prior information. NAPSAC uses heuristics that an inlier tends to be
closer to other inliers than outliers. It samples data within defined radius from a randomly
selected point. GASAC is based on genetic algorithm, whose procedure is quite different
from RANSAC (Figure 1). It manages a subset of data as a gene, which can generate a hy-
pothesis. Each gene receives penalty by loss of its generated hypothesis. The penalty causes
less opportunity in evolving the new gene pool from the current genes.

Partial Evaluation It is possible to quit evaluating a hypothesis if the hypothesis is far
from the truth apparently, which reduces computing time. Partial evaluation decreases the
necessary number of data for evaluation, N in (9). R-RANSAC (Randomized RANSAC) [5]
performs a preliminary test, Td,d test, at Step 3.5. Full evaluation is only performed when the
generated hypothesis passes the preliminary test. Td,d test is passed if all d data among ran-
domly selected d data are consistent with the hypothesis. Another R-RANSAC [18] utilizes
SPRT (Sequential Probability Ratio Test), which replaces Step 4 and 5. SPRT terminates
when likelihood ratio falls under the optimal threshold, whose iterative solution was derived
in [18]. Bail-out test [3] also similarly substitutes Step 4 and 5. Preemptive RANSAC [21]
performs parallel evaluation, while RANSAC do serial evaluation. It generates enough num-
ber of hypotheses before its evaluation phase, and evaluates the hypotheses all together at
each datum. It is useful for applications with limited time constraint.

3.3 To Be Robust
RANSAC needs to tune two variables with respect to the given data: the threshold c for
evaluating a hypothesis and the number of iteration t for generating enough hypotheses.

Adaptive Evaluation The threshold c needs to be adjusted automatically to sustain high
accuracy in in varying data. LMedS does not need any tuning variable because it tries to
minimize median squared error. However, it becomes worse where the inlier ratio is under 0.5
since the median is from outliers. MLESAC and its descendants are based on the parametric
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(a) (γ∗,σ∗) = (0.3,0.25) (b) (γ∗,σ∗) = (0.9,0.25) (c) (γ∗,σ∗) = (0.7,0.25) (d) (γ∗,σ∗) = (0.7,4.00)

Figure 4: Examples of Line Fitting Data

probability distribution (5), which needs σ and γ for evaluating a hypothesis. Feng and Hung’
MAPSAC [10] (not original MAPSAC [28]) and uMLESAC [4] calculate them through EM
(Expectation Maximization) at Step 3.5. AMLESAC [16] uses uniform search and gradient
descent for σ and EM for γ . pbM-estimator also needs bandwidth s (8) for its optimization
step. It is determined as N−0.2×MAD, where MAD is Median Absolute Deviation.

Adaptive Termination The number of iteration t means the number of generated hypothe-
ses, whose automatic assignment achieves high accuracy and less computing time in varying
data. Feng and Hung’ MAPSAC updates the number of iteration via 1 at Step 5.5, where γ

comes from EM. However, it can terminate too earlier because incorrect hypotheses some-
times entail high γ with big σ (refer ambiguity of Figure 4(a) and 4(d)). uMLESAC updates
the number via γ and σ together as follows:

t =
logα

log(1− kmγm)
where k = erf

(
β√
2σ

)
, (10)

where erf is Gauss error function which is used to calculate a value of Gaussian cdf. The
variable k physically means probability that sampled data belong to the error confidence
β . uMLESAC controls trade-off between accuracy and computing time using α and β . R-
RANSAC with SPRT also has a similar discounting coefficient with k, which is probability
of rejecting a good hypothesis in SPRT.

4 Experiment

4.1 Line Fitting: Synthetic Data
4.1.1 Configuration

Line fitting was tackled to evaluate performance of RANSAC family. 200 points were gen-
erated. Inliers came from the true line, 0.8x+0.6y−1.0 = 0, with unbiased Gaussian noise.
Outliers were uniformly distributed in the given region (Figure 4). Experiments were per-
formed on various sets of the inlier ratio γ∗ and magnitude of noise σ∗ (Figure 4). Each
configuration was repeated 1000 times for statistically representative results. Least square
method using 3 points was used to estimate a line and geometric distance was used as an
error function. Experiments were carried out on 12 robust estimators. Each estimator was
tuned at each configuration except RANSAC* and MLESAC*, which were tuned only at
(γ∗,σ∗) = (0.7,0.25) to compare robustness without tuning. Performance of each estima-
tor was measured by accuracy and computing time. Accuracy was quantified through the
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Figure 5: Accuracy (NSE) on Varying γ∗ and σ∗

Figure 6: Computing on Varying γ∗ and σ∗

normalized squared error of inliers (NSE),

NSE(M) =
∑di∈Din Err(di;M )2

∑di∈Din Err(di;M∗)2 , (11)

where M∗ and M are the true line and its estimation, Din is a set of inliers. NSE comes from
Choi and Kim’ problem definition [4]. NSE is close to 1 when the magnitude of error by
the estimated line is near the magnitude of error by the truth. Computing time was measured
using MATLAB clock function at Intel Core 2 CPU 2.13GHz. Robustness can be observed
via variation of accuracy in varying configuration.

4.1.2 Results and Discussion

Figure 5 and 6 show accuracy and computing time on the varying inlier ratio and magnitude
of noise.

On Accuracy MLESAC were about 5% more accurate than RANSAC in almost all config-
urations. MLESAC takes into account the magnitude of error, while RANSAC has constant
loss regardless of the magnitude. It makes better evaluation on hypotheses, but it became 15%
slower than RANSAC. LO-RANSAC is about 10% more accurate than RANSAC due to its
local optimization. It had about 5% more computation burden compared with RANSAC.
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(a) Estimated γ on Varying γ∗ (b) Estimated σ on Varying σ∗ (c) Estimated t on Varying γ∗

Figure 7: Results on Varying Configuration

Similarly, GASAC and pbM-estimator were nearly 14% and 7% more accurate but 6% and
16 times slower than RANSAC.

On Computing Time R-RANSAC with Td,d test had similar accuracy with RANSAC, but
slightly faster in spite of more iteration. It could reduce time because it used a subset of data
in its evaluation step. R-RANSAC with SPRT had more accurate than RANSAC, but it did
not reduce computing time due to its adaptive termination. Its adaptive scheme decided its
termination much longer than tunned RANSAC (Figure 7(c)).

On Robustness MLESAC, Feng and Hung’ MAPSAC, AMLESAC, u-MLESAC are based
on an error model, which is mixture of Gaussian and uniform distribution. Figure 7(a) and
7(b) show estimated variables, γ and σ , of the error model, and Figure 7 presents the number
of iteration. Feng and Hung’ MAPSAC, AMLESAC and u-MLESAC estimated the error
model approximately except low inlier ratio. Therefore, they had low accuracy near 0.3 in-
lier ratio, but they were more accurate than RANSAC* and MLESAC*, which were tunned
at 0.7 inlier ratio, in low inlier ratio. LMedS and GASAC became less accurate under 0.5
inlier ratio. It results from their loss function, median of squared error, which selects squared
error by an outlier when outliers is more than half. Especially, Feng and Hung’ MAPSAC
and u-MLESAC became much faster than RANSAC* and MLESAC* after 0.7 inlier ratio
due to their adaptive termination. Their number of iteration at 0.3 inlier ratio were signifi-
cantly different from the tunned number of iteration using 1 because of their incorrect error
model estimation. R-RANSAC with SPRT overestimated the number of iteration in almost
all configuration.

4.2 2D Homography Estimation: Real Data
4.2.1 Configuration

Planar homography estimation was also used to evaluate performance of the estimators. Ox-
ford VGG Graffiti image set (Figure 8) were utilized for experiments. SIFT [17] were used to
generate tentative corresponding points. Four-point algorithm [13] estimated planar homog-
raphy using four sets of matched points. Accuracy and time measures were same with line
fitting experiments. Error function Err is Euclidian distance between a point and projection
of its matched point. Inliers were identified among tentative matching through the true ho-
mography, which is incorporated with Graffiti image set. pbM-estimator did not used to the
experiments since it is difficult to transform homography constraint into EIV problem form.

Citation
Citation
{Lowe} 2004

Citation
Citation
{Hartley and Zisserman} 2003



CHOI, KIM, YU: PERFORMANCE EVALUATION OF RANSAC FAMILY 9

(a) Image 1 (b) Image 2 (c) Image 3 (d) Image 4

Figure 8: Oxford VGG Graffiti Images [2]

Figure 9: Accuracy (NSE) and Computing time on Three Image Pairs

Experiments were performed into each image pair 100 times for statistically meaningful
results.

4.2.2 Results and Discussion

Figure 9 shows accuracy and computing time on three image pairs, which are Image 1 to
Image 2 (1640 pairs of points), Image 1 to Image 3 (888 pairs of points), and Image 1 to
Image 4 (426 pairs of points). Dash (-) on Figure 9 means that its NSE is more than 50, that
is, failure on the average. RANSAC* and MLESAC* were tunned in estimating homography
from Image 1 to Image 3.

Accuracy of RANSAC, MSAC and MLESAC differed nearly 4%. MSAC was the most
accurate among three estimators, and MLESAC was the worst. Local optimization in LO-
RANSAC enhanced accuracy nearly 20% with 7% computational burden. GASAC also im-
proved accuracy significantly, but its computing time was 5 times more than RANSAC.

Subset evaluation accelerated R-RANSAC with Td,d test around 6 times compared with
RANSAC, which also kept similar accuracy with that. It is more significant improvement
than line fitting experiments. R-RANSAC with SPRT also had similar performance in esti-
mating homography from Image 1 to Image 2. However, it failed in other two experiments,
which is similar result with 0.3 inlier ratio in line fitting experiments.

Performance of Feng and Hung’ MAPSAC was similar with line fitting experiments. Its
accuracy was similar with RANSAC, but it failed in severe situation as like homography
from Image 1 to Image 4. Although u-MLESAC did not fail in the situation, but it also failed
more severe image pairs which tunned RANSAC could estimate homography properly. They
consumed less time in homography from Image 1 to Image 2 compared with RANSAC* and
MLESAC*. LMedS and GASAC failed in estimating homography from Image 1 to Image 4,
since its inlier ratio is less than 0.5.
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5 Conclusion
RANSAC and its descendants are summarized in three viewpoints: accuracy, computing
time, and robustness. This paper also describes that completely different methods share the
same idea. For example, R-RANSAC and Preemptive RANSAC accelerate RANSAC though
partial evaluation. Such insight is useful to analyze the previous works and develop the new
method. The results of two experiments were also analyzed in three viewpoints. The results
presented a trade-off of accuracy/robustness and computing time. For example, uMLESAC
sustains high accuracy in varying data, but it needs 1.5 times more time than RANSAC due
to its adaptation.

Meaningful researches has been performed in RANSAC family, but it needs to investi-
gated more. Balanced accuracy/robustness and computing time can be achieved from merg-
ing the previous works or the new breakthrough. Adaptation in varying data is a challenging
problem because the previous works do not keep accuracy in low inlier ratio. MLESAC is
the first breakthrough which reformulated original RANSAC in the probabilistic view. The
new interpretation of the problem can lead another breakthrough. The problem can be in-
corporated with another problems such as model selection. Data with multiple models are a
attractive problem for the current single result formulation. The new tool can stimulate this
field such as genetic algorithm of GASAC. Survey and performance evaluation including the
recent works [7, 14, 26] contributes users to choose a proper method for their applications.
The Middlebury Computer Vision Pages [1] is a good example for that.
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