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Abstract

A key problem in shape-from-shading is how to simultanepsatisfy data-closeness
and regularisation (such as surface smoothness) corstraims paper makes two con-
tributions towards solving this problem. The first is to dése a smoothness constraint
which preserves surface structure by adaptively smoothdegrding to the intensity gra-
dient magnitude. The second is to derive a framework whieks® strictly satisfy this
constraint while maintaining zero brightness error. Ekpental results on both syn-
thetic and real world imagery demonstrate that our methdmbik robust and accurate
and outperforms a number of existing techniques.

1 Introduction

Shape-from-shading is a classical problem in computeowigihich has attracted over four
decades of research,[9]. The problem is underconstrained and proposed solutiaxs,h
in general, made strong assumptions in order to make thégunabactable. However, even
when these assumptions are satisfied (for example in a sigaieproduced image) exist-
ing shape-from-shading algorithms still fail to recovecaate surface shape from images
of complex objects.

Minimization methods are a traditional and robust way towsahe shape from shading
problem, first proposed by Horb]f These methods try to optimize the brightness error suk
ject to additional regularisation constraints. Worthorgand Hancockd] treated the image
irradiance equation as a hard constraint. Their idea wasdoabust regularisers to optimise
the solution within the space of solutions which strictlynimiise the brightness error. Pra-
dos and Faugerag][used viscosity solutions to solve the partial differelgiguation which
arises from the shape-from-shading problem. Their metloodunts for perspective projec-
tion effects but assumes frontal illumination. The probleith these methods is that they
trade off either strict minimisation of the brightness errersus satisfaction of the additional
regularisation constraint. The result is that the recavstefaces are either oversmooth or
highly susceptible to noise.
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More recently, several authors have posed shape-fromirghiaderms of pairwise Markov
Random Fields3, 4, 6]. Haines and Wilsond] describe surface normal direction probabilis-
tically in terms of a Fisher-Bingham distribution for eadked. Belief propagationis used to
solve for the undetermined degree of freedom for each seirfaomal. Although their model
provides an elegant formulation of the problem, in practieeresults obtained are uncon-
vincing. Potetz §] also uses belief propagation but solves for the surfacdignaat each
pixel. The framework uses factor nodes to capture irradiasmoothness and integrability
constraints. Solving the resulting model is extremely cliffi and results are only shown for
a single synthetic image.

In this paper we present a new shape-from-shading algosithith obtains a smooth
solution with zero brightness error while seeking to preseurface structure. The novelty
in our framework lies in allowing the regularisation comagtit to be run to convergence. This
is possible because our constraint preserves surfacewseas opposed to being trivially
optimised by a planar surface. In other words, our smoothoesstraint is also, in a sense,
subject to constraints derived from the image intensityprictice, our algorithm provides
improved results over existing methods on a wide range ofjiénaof complex objects.

2 Shape from Shading

The aim of computational shape-from-shading is to makenedés of surface shape from
the intensity measurements in a single image. Since the minoblight reflected by a point
on a surface is related to the surface orientation at thatgoigeneral the shape is estimated
in the form of a field of surface normals(a needle-map). Asagra normalised and linear
cameraresponse, the image intensity predicted by the sgtiphmbertian reflectance model
is given by

E(N,L,pd) = paN-L, 1)

whereN is the local surface normdl, is a vector in the light source direction apglis the
diffuse albedo which describes the intrinsic reflectivifytee surface.

For an image in which the viewer and light source directioresfaxed, the radiance
function reduces to a function of the surface normal. Thélero is an ill-posed problem
because the surface normal has two independent variabbdese &dditional constraint are
needed as the regularizing term. Two popular regularizng$ are smoothness constraint
and integrability constraint. Solving the shape from shgdiroblem is converted into a
minimization problem which tries to minimize

£ = [ [(100y) = ENGy).Lop)?+ AsSINGLY) + At (NG y)dxdy (2

whereS(N(x,y)) andInt(N(x,y)) are smoothness and integrability constraints respegtivel
As andA; are the coefficients of each term.

The minimization of the above function was done throughatanal calculus. How-
ever, the major problem for the above method is the briglsteeor will not be zero even
if we provide the ground truth normal as initial input. An apach which overcomes these
deficiencies was proposed by Worthington and Hanc8kkiheir idea was to choose a solu-
tion which strictly satisfies the brightness constraintvatrg pixel but uses the regularisation
constraint to help choose a solution from within this reduselution space.If we make the
assumption that the reflectance properties are homogerossahe surface (i.e. constant
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unit albedo), we obtain a simple relationship between alegkintensity and the angle of
incidence 8 = Z/NL, between the light source and surface normal:

I(x,y) = N(x,y)-L = cos8. 3

Geometrically, this means that the surface normal mustrdi@ oight circular cone whose
axis is the light source direction and whose half anglé is arccosgl ). By constraining the
surface normal to lie on the cone, we satisfy the image iara@ck equation and hence ensure
the fullest possible use of the input image.

To solve this minimisation, Worthington and Hancock use a $tep iterative procedure
which decouples application of the regularization comstrand projection onto the closest
solution with zero brightness error:

2.n¢ 1 = arg min d(n,n;),
gBright(n)=O

whered(.,.) is the arc distance between two unit vectors dggl(n¢) enforces a robust
regularizing constraint. The second step of this proceissptemented using

N1 = O(a,a)n, 4)

where@ is a rotation matrix which rotates a unit vector about an axiy an anglea. To
restore a normal to the cone we gset n{ x L anda = 6 —arcco$n; -L). The result is the
closest direction that satisfi€@s= arccogl ).

However, neither the conventional variational method herrhethod proposed by Wor-
thington and Hancock realize the important of the regudgios term. The smoothness and
integrability constraints they used are both surface caimgs which assure that the result is
a continuous surface. But they fail to preserve the streafithe surface which manifested
in the intensity.

3 A Structure-Preserving Constraint

Individual pixel intensities provide a partial constraimt the local surface normal direction
(namely the opening angle of the cone). However, the changeensity across an image
conveys information about the structure of the surface.adduris to exploit this information
in our regularisation term.

The accuracy of the variational approach is entirely depahdn the choice of regulari-
sation constraint. Typical smoothness constraints depertde second derivative of surface
height which is described as

/ / (P%+ PG+ 0% + a7)dxdy, (5)

wherep andq are the first order partial derivatives of the surface heigtite smoothness
constraint is an isotropic constraint which assumes thfaseichanges are identical in every
direction. Although the intensity gradient constraint vigtsoduced to solve this problem
[10], which requires that the intensity gradient of the recanutded image be close to the
intensity gradient of the input image in both tkeandy directions, there is no existing
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framework for fully exploiting structural information fro the local neighbourhood in every
direction.

We propose an alternative regularisation constraint whiciploys information about
the intensity gradient in all directions over a local neighthood. For a pixe(x,y), we
define the local neighborhood &x,y) = {(x+ 1,y), (x—1,y),(x,y+1),(x,y—1)}. We
precompute the change in incident angle between all paimsighboring pixels:

|arccosl (x1,y1)) —arccosl (xz,¥2))|
S((x1,Y1), (X2,¥2)) = AS ; (6)

whereASyux is the largest change in incident angle over the image wisalsed to nor-
malize the weight . We define a weight between adjacent pbated on the magnitude
of the change in incident angl&V((xy,y1), (X2, y2)) = e<S0ay1).02¥2)) 'where the constant
K determines the behavior of the constraint (we Kse 10). For small values, the con-
straint reduces to local smoothness, for large values moretgre is preserved at the cost
of increased sensitivity to noise.

The total of the weights between a pixel and its neighbors/sgby:

Zxy)= 5 W(xY),(i])) ()

(i,1)eQ(xy)

The surface normal at pixék,y) at iterationt + 1 is given by the weighted average of its
neighboring normals at iteratidn

(t+1)
N+ ' :“7()(’)/)’ 8
(X,y) |“—l(t+1)(xvy)” ©
where w I ]
WY, (D). ©)

(1) (x y) = N (i,

He <i,j>ezcz<xy> ( Z(xy)
If we choose the functio®((xq,Y1), (X2,¥2)) to be a constant equal to zero, the iterative
process will simplify to the conventional smoothness ca@isst. If the change of the intensity
in x andy directions alone are taken into consideration, the stratwonstraint here is
equivalent to the intensity gradient constraint.

The regularisation constraint described above could berparated into the standard
variational approach. However, this method would stilfsufrom poor data-closeness due
to the treatment of the image irradiance equation as a sofftint. Instead, we note that
the application of this constraint retains surface stmectand so iteratively applying the
constraint until convergence does not result in an oversheaosurface.

4 A New Framework for Shape-from-shading

The variational method results in oversmooth surface egdémsince the minimisation pro-
cedure does not strictly minimise the brightness condtréinaddition, the choice of coef-
ficients for each regularisation term dramatically efféet tesult and in fact must be tuned
for each input image. Worthington and Hanco8ktfeat the brightness error as a hard con-
straint and rotate the normal such that Lambert’s law istyrsatisfied at each iteration.
The problem here is that the regularisation constraint \&®nsatisfied since only a single
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(c) (d)
Figure 1: Converged shape in each step 2. From (a) to (dialieétion, 200 iterations, 400
iterations, 600 iterations

application of the regularisation update is applied befbeenormal is rotated back to the
cone. The effect is that surface normals flip between twatiposi: an on-cone position and
a position representing a step towards reducing the eretalthe regularisation constraint.
The result does not improve significantly beyond the firsaiien and decisions regarding
the gross structure of the surface made at the stage ofigatian are simply reinforced.

Our idea is to allow the regularisation update to be run toveggence before the surface
normal is restored to the cone. This is only possible becauseegularisation constraint
seeks to preserve surface structure. Hence, even when rantergence, the result still
captures the gross structure of the surface. Our framewendively interleaves this process
with rotating the normals back to their closest on-conetjwsi Since normals are allowed
to move many times before being restored to the cone, chdadles gross structure of the
surface are possible and information about surface strei@udiffused over a wider region.
We follow [8] and commence from an initialisation in whicteteurface normals are placed
on their cones pointing in the direction of the negative imgadient.

A summary of our algorithm is as follows:

1. ObtainN(© (x,y) using negative gradient initialisatio8][

N

. Repeatedly apphy8] until convergence
3. Rotate normals back to corlé(x,y) = O@N(ina) (x y)
4. Stop if converged, otherwise iterate to step 2

To obtain surface height estimates, we integrate the fielidhce normals using the algo-
rithm of Frankot and Chellappa].

Fig. 1 shows the converged shapes described in step 2. From léghto top to bottom
are the converged shape in subsequent statues beforagdiatik to the cone. The shape
preserves the structure features, such as the the bellyharttead, and notice that from the
second recovered shape, the result is still reasonableddedak to cone. The advantage of
this framework will be seen in the experiment.
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(a) (b) (©) (d)
Figure 2: Surfaces recovered from the input image showreietth panel of Fig.3 From (a)
to (d): ground truth, proposed algorithnd] [[ 3].

i R ¢

(a) (b) (©) (d)
Figure 3: Frontal View of Mesh. From (a) to (d): ground trythpposed algorithmg], [3].

5 Experiment

We apply our method to both synthetic and real images. We eoenpur result with two
previous methods: Worthington and Hancock’s, and HainésVditson’s. The unit albedo
and frontal illumination is assumed for synthetic image.

Fig. 2 and Fig.7 show the recovered surfaces on the Stanford bunny and Budsithg
the proposed algorithm, Worthington and Hanco8kdnd Haines and Wilson3]. The
corresponding view of the ground truth surface is shown énfitst panel. The inputimage
is shown in the top left panel of Fig The inaccuracy at the ear is because the ground truth
data is pointed backwards and there is a discontinuity berwiee head and the ear. Note
that the surface recovered by the proposed algorithm hésrlggbdbal structure whilst still
containing much of the finescale surface detail. The adgargéour framework is also seen
in this Fig. Notice that the holes in Worthington and Hanceakethod B] are the results of
ruining the smooth constraint by rotating back to the conesich iteration.

Fig. 3 and Fig. 8 show the frontal view of meshes of two objects. The corredpmn
view of the ground truth mesh is shown in the first panel. Thehes from left to right are
proposed algorithm, Worthington and Hancogkdnd Haines and Wilsor8]. The surface
recovered by the proposed algorithm is quite closed to tbargt truth surface. The fine
structure near the eyes and claws of the bunny and the bdydidhe Buddha are also
preserved.

Fig. 4 and Fig.9 compare the average angular error of normals in each terédir both
proposed method and Worthington and Hanc@k The proposed method performs better
both at the error and converge speed. Note that from the udatafcloseness constraint
in the second time, the error increases rather than desredd®e reason for this is the
concave/convex problem. The structure constraint smabthsurface to reduce the error
while data closeness constraint increases the error.
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Figure 4: Mean angular Error in each iteration.

(b)

(c)
Figure 5: Error Map, From (a) to (c): proposed algorith8j, [3].
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Figure 6: Histogram of Errors, From (a) to (c): proposed &thm, [8], [3].

Fig. 5 and Fig. 10 show the location of angular errors in each recovered neege
The angular error has been mapped into the scale of 0 to 1. ditkebtlie represents the
error is zero and the red represents the biggest error. Katetie Worthington and Han-
cock’s method §] performs well at the bunny’s ear at the concave and conveiside. The
proposed method has a better performance in whole for tHeablmages are dark blue.
The overall body and head of the bunny is blue and the bellhefBuddha is also better
than those of other methods. The results illustrate thag¢utie: correct convex and concave
situation, the proposed method does well in the detail &irac

Fig. 6 and Fig. 11 compare the histogram of the angular error. The proposeadésh
much more accurate than other methods.

Finally, we apply our algorithm to a real captured at the ntaimarea. The sky has
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(a) (b) (©) (d)
Figure 7: Surfaces recovered from the input image shownendft panel of Fig.8. From
(a) to (d): ground truth, proposed algorithrél],[[ 3].

(a) (b) (©) (d)
Figure 8: Frontal View of Mesh. From (a) to (d): ground trythpposed algorithmg], [3].
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Figure 9: Mean angular error in each iteration.

been manually cut off. The light source direction is consdeo be from the above. The
proposed method also gives a plausible result under thdroatal illumination case. Note
that the parts with the cast shadow, the proposed methodsstimyvpotential in handling
small change in albedo.
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(b)

Figure 10: Error Map, From (a) to (c): proposed algorith&j, [3].
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Figure 11: Histogram of Errors, From (a) to (c): proposeagtgm, [g], [3].
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Figure 12: Real Image, (@) is input image, (b) and (c) areHhteigp from different view
point

6 Conclusions

We have presented a practical and robust framework for aesfiam-shading algorithm
which recovers stable surface estimates from a wide rangeabfand synthetic imagery.
The drawback of oversmoothed solution is overcome by apgliie structure regularisa-
tion. The new framework incorporates both the structurestaimt and data closeness con-
straint. In future work we intend to investigate alternatimitialisations and explore how to
incorporate integrability constraints within our framewo
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