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Abstract

A key problem in shape-from-shading is how to simultaneously satisfy data-closeness
and regularisation (such as surface smoothness) constraints. This paper makes two con-
tributions towards solving this problem. The first is to describe a smoothness constraint
which preserves surface structure by adaptively smoothingaccording to the intensity gra-
dient magnitude. The second is to derive a framework which seeks to strictly satisfy this
constraint while maintaining zero brightness error. Experimental results on both syn-
thetic and real world imagery demonstrate that our method isboth robust and accurate
and outperforms a number of existing techniques.

1 Introduction

Shape-from-shading is a classical problem in computer vision which has attracted over four
decades of research [1, 9]. The problem is underconstrained and proposed solutions have,
in general, made strong assumptions in order to make the problem tractable. However, even
when these assumptions are satisfied (for example in a synthetically produced image) exist-
ing shape-from-shading algorithms still fail to recover accurate surface shape from images
of complex objects.

Minimization methods are a traditional and robust way to solve the shape from shading
problem, first proposed by Horn [5]. These methods try to optimize the brightness error sub-
ject to additional regularisation constraints. Worthington and Hancock [8] treated the image
irradiance equation as a hard constraint. Their idea was to use robust regularisers to optimise
the solution within the space of solutions which strictly minimise the brightness error. Pra-
dos and Faugeras [7] used viscosity solutions to solve the partial differential equation which
arises from the shape-from-shading problem. Their method accounts for perspective projec-
tion effects but assumes frontal illumination. The problemwith these methods is that they
trade off either strict minimisation of the brightness error versus satisfaction of the additional
regularisation constraint. The result is that the recovered surfaces are either oversmooth or
highly susceptible to noise.
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More recently, several authors have posed shape-from-shading in terms of pairwise Markov
Random Fields [3, 4, 6]. Haines and Wilson [3] describe surface normal direction probabilis-
tically in terms of a Fisher-Bingham distribution for each pixel. Belief propagation is used to
solve for the undetermined degree of freedom for each surface normal. Although their model
provides an elegant formulation of the problem, in practicethe results obtained are uncon-
vincing. Potetz [6] also uses belief propagation but solves for the surface gradient at each
pixel. The framework uses factor nodes to capture irradiance, smoothness and integrability
constraints. Solving the resulting model is extremely difficult and results are only shown for
a single synthetic image.

In this paper we present a new shape-from-shading algorithmwhich obtains a smooth
solution with zero brightness error while seeking to preserve surface structure. The novelty
in our framework lies in allowing the regularisation constraint to be run to convergence. This
is possible because our constraint preserves surface structure as opposed to being trivially
optimised by a planar surface. In other words, our smoothness constraint is also, in a sense,
subject to constraints derived from the image intensity. Inpractice, our algorithm provides
improved results over existing methods on a wide range of imagery of complex objects.

2 Shape from Shading

The aim of computational shape-from-shading is to make estimates of surface shape from
the intensity measurements in a single image. Since the amount of light reflected by a point
on a surface is related to the surface orientation at that point, in general the shape is estimated
in the form of a field of surface normals(a needle-map). Assuming a normalised and linear
camera response, the image intensity predicted by the simplest Lambertian reflectance model
is given by

E(N,L,ρd) = ρdN ·L, (1)

whereN is the local surface normal,L is a vector in the light source direction andρd is the
diffuse albedo which describes the intrinsic reflectivity of the surface.

For an image in which the viewer and light source directions are fixed, the radiance
function reduces to a function of the surface normal. The problem is an ill-posed problem
because the surface normal has two independent variables. Some additional constraint are
needed as the regularizing term. Two popular regularizing terms are smoothness constraint
and integrability constraint. Solving the shape from shading problem is converted into a
minimization problem which tries to minimize

E (n) =
∫ ∫

(I(x,y)−E(N(x,y),L,ρd))
2 + λsS(N(x,y))+ λiInt(N(x,y))dxdy (2)

whereS(N(x,y)) andInt(N(x,y)) are smoothness and integrability constraints respectively.
λs andλi are the coefficients of each term.

The minimization of the above function was done through variational calculus. How-
ever, the major problem for the above method is the brightness error will not be zero even
if we provide the ground truth normal as initial input. An approach which overcomes these
deficiencies was proposed by Worthington and Hancock [8]. Their idea was to choose a solu-
tion which strictly satisfies the brightness constraint at every pixel but uses the regularisation
constraint to help choose a solution from within this reduced solution space.If we make the
assumption that the reflectance properties are homogenous across the surface (i.e. constant
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unit albedo), we obtain a simple relationship between observed intensity and the angle of
incidence,θi = ∠NL, between the light source and surface normal:

I(x,y) = N(x,y) ·L = cosθi. (3)

Geometrically, this means that the surface normal must lie on a right circular cone whose
axis is the light source direction and whose half angle isθi = arccos(I). By constraining the
surface normal to lie on the cone, we satisfy the image irradiance equation and hence ensure
the fullest possible use of the input image.

To solve this minimisation, Worthington and Hancock use a two step iterative procedure
which decouples application of the regularization constraint and projection onto the closest
solution with zero brightness error:

1. n′
t = fReg(nt)

2. nt+1 = arg min
EBright(n)=0

d(n,n′
t),

whered(., .) is the arc distance between two unit vectors andfReg(nt) enforces a robust
regularizing constraint. The second step of this process isimplemented using

nt+1 = Θ(a,α)n′
t , (4)

whereΘ is a rotation matrix which rotates a unit vector about an axisa by an angleα. To
restore a normal to the cone we seta = n′

t ×L andα = θi −arccos(n′
t ·L). The result is the

closest direction that satisfiesθi = arccos(I).
However, neither the conventional variational method nor the method proposed by Wor-

thington and Hancock realize the important of the regularisation term. The smoothness and
integrability constraints they used are both surface constraints which assure that the result is
a continuous surface. But they fail to preserve the structure of the surface which manifested
in the intensity.

3 A Structure-Preserving Constraint

Individual pixel intensities provide a partial constrainton the local surface normal direction
(namely the opening angle of the cone). However, the change in intensity across an image
conveys information about the structure of the surface. Ouraim is to exploit this information
in our regularisation term.

The accuracy of the variational approach is entirely dependent on the choice of regulari-
sation constraint. Typical smoothness constraints dependon the second derivative of surface
height which is described as

∫ ∫
(p2

x + p2
y + q2

x + q2
y)dxdy, (5)

wherep andq are the first order partial derivatives of the surface height. The smoothness
constraint is an isotropic constraint which assumes the surface changes are identical in every
direction. Although the intensity gradient constraint wasintroduced to solve this problem
[10], which requires that the intensity gradient of the reconstructed image be close to the
intensity gradient of the input image in both thex and y directions, there is no existing



4 HUANG, SMITH: SFS WITH STRUCTURE-PRESERVING SMOOTHNESS

framework for fully exploiting structural information from the local neighbourhood in every
direction.

We propose an alternative regularisation constraint whichemploys information about
the intensity gradient in all directions over a local neighbourhood. For a pixel(x,y), we
define the local neighborhood asΩ(x,y) = {(x + 1,y),(x−1,y),(x,y + 1),(x,y−1)}. We
precompute the change in incident angle between all pairs ofneighboring pixels:

S((x1,y1),(x2,y2)) =
|arccos(I(x1,y1))−arccos(I(x2,y2))|

∆Smax
, (6)

where∆Smax is the largest change in incident angle over the image which is used to nor-
malize the weight . We define a weight between adjacent pixelsbased on the magnitude
of the change in incident angle:W ((x1,y1),(x2,y2)) = eKS((x1,y1),(x2,y2))

, where the constant
K determines the behavior of the constraint (we useK = 10). For small values, the con-
straint reduces to local smoothness, for large values more structure is preserved at the cost
of increased sensitivity to noise.

The total of the weights between a pixel and its neighbors is given by:

Z(x,y) = ∑
(i, j)∈Ω(x,y)

W ((x,y),(i, j)). (7)

The surface normal at pixel(x,y) at iterationt + 1 is given by the weighted average of its
neighboring normals at iterationt:

N(t+1)(x,y) =
µµµ (t+1)(x,y)

‖µµµ(t+1)(x,y)‖
, (8)

where

µµµ (t+1)(x,y) = ∑
(i, j)∈Ω(x,y)

N(t)(i, j)
W ((x,y),(i, j))

Z(x,y)
. (9)

If we choose the functionS((x1,y1),(x2,y2)) to be a constant equal to zero, the iterative
process will simplify to the conventional smoothness constraint. If the change of the intensity
in x and y directions alone are taken into consideration, the structural constraint here is
equivalent to the intensity gradient constraint.

The regularisation constraint described above could be incorporated into the standard
variational approach. However, this method would still suffer from poor data-closeness due
to the treatment of the image irradiance equation as a soft constraint. Instead, we note that
the application of this constraint retains surface structure and so iteratively applying the
constraint until convergence does not result in an oversmoothed surface.

4 A New Framework for Shape-from-shading

The variational method results in oversmooth surface estimates since the minimisation pro-
cedure does not strictly minimise the brightness constraint. In addition, the choice of coef-
ficients for each regularisation term dramatically effect the result and in fact must be tuned
for each input image. Worthington and Hancock [8] treat the brightness error as a hard con-
straint and rotate the normal such that Lambert’s law is strictly satisfied at each iteration.
The problem here is that the regularisation constraint is never satisfied since only a single
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(a) (b)

(c) (d)
Figure 1: Converged shape in each step 2. From (a) to (d): initialisation, 200 iterations, 400
iterations, 600 iterations

application of the regularisation update is applied beforethe normal is rotated back to the
cone. The effect is that surface normals flip between two positions: an on-cone position and
a position representing a step towards reducing the error due to the regularisation constraint.
The result does not improve significantly beyond the first iteration and decisions regarding
the gross structure of the surface made at the stage of initialisation are simply reinforced.

Our idea is to allow the regularisation update to be run to convergence before the surface
normal is restored to the cone. This is only possible becauseour regularisation constraint
seeks to preserve surface structure. Hence, even when run toconvergence, the result still
captures the gross structure of the surface. Our framework iteratively interleaves this process
with rotating the normals back to their closest on-cone position. Since normals are allowed
to move many times before being restored to the cone, changesto the gross structure of the
surface are possible and information about surface structure is diffused over a wider region.
We follow [8] and commence from an initialisation in which the surface normals are placed
on their cones pointing in the direction of the negative image gradient.

A summary of our algorithm is as follows:

1. ObtainN(0)(x,y) using negative gradient initialisation [8]

2. Repeatedly apply (8) until convergence

3. Rotate normals back to cone:N(x,y) = ΘN(final)(x,y)

4. Stop if converged, otherwise iterate to step 2

To obtain surface height estimates, we integrate the field ofsurface normals using the algo-
rithm of Frankot and Chellappa [2].

Fig. 1 shows the converged shapes described in step 2. From left to right, top to bottom
are the converged shape in subsequent statues before rotating back to the cone. The shape
preserves the structure features, such as the the belly and the head, and notice that from the
second recovered shape, the result is still reasonable before back to cone. The advantage of
this framework will be seen in the experiment.
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(a) (b) (c) (d)
Figure 2: Surfaces recovered from the input image shown in the left panel of Fig.3 From (a)
to (d): ground truth, proposed algorithm, [8], [3].

(a) (b) (c) (d)
Figure 3: Frontal View of Mesh. From (a) to (d): ground truth,proposed algorithm, [8], [3].

5 Experiment

We apply our method to both synthetic and real images. We compare our result with two
previous methods: Worthington and Hancock’s, and Haines and Wilson’s. The unit albedo
and frontal illumination is assumed for synthetic image.

Fig. 2 and Fig.7 show the recovered surfaces on the Stanford bunny and Buddhausing
the proposed algorithm, Worthington and Hancock [8] and Haines and Wilson [3]. The
corresponding view of the ground truth surface is shown in the first panel. The input image
is shown in the top left panel of Fig.3 The inaccuracy at the ear is because the ground truth
data is pointed backwards and there is a discontinuity between the head and the ear. Note
that the surface recovered by the proposed algorithm has better global structure whilst still
containing much of the finescale surface detail. The advantage of our framework is also seen
in this Fig. Notice that the holes in Worthington and Hancock’s method [8] are the results of
ruining the smooth constraint by rotating back to the cone ineach iteration.

Fig. 3 and Fig. 8 show the frontal view of meshes of two objects. The corresponding
view of the ground truth mesh is shown in the first panel. The meshes from left to right are
proposed algorithm, Worthington and Hancock [8] and Haines and Wilson [3]. The surface
recovered by the proposed algorithm is quite closed to the ground truth surface. The fine
structure near the eyes and claws of the bunny and the belly hole of the Buddha are also
preserved.

Fig. 4 and Fig.9 compare the average angular error of normals in each iteration for both
proposed method and Worthington and Hancock [8]. The proposed method performs better
both at the error and converge speed. Note that from the use ofdata closeness constraint
in the second time, the error increases rather than decreases. The reason for this is the
concave/convex problem. The structure constraint smoothsthe surface to reduce the error
while data closeness constraint increases the error.
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Figure 4: Mean angular Error in each iteration.
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Figure 5: Error Map, From (a) to (c): proposed algorithm, [8], [3].
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Figure 6: Histogram of Errors, From (a) to (c): proposed algorithm, [8], [3].

Fig. 5 and Fig. 10 show the location of angular errors in each recovered needlemap.
The angular error has been mapped into the scale of 0 to 1. The dark blue represents the
error is zero and the red represents the biggest error. Note that the Worthington and Han-
cock’s method [8] performs well at the bunny’s ear at the concave and convex decision. The
proposed method has a better performance in whole for the global images are dark blue.
The overall body and head of the bunny is blue and the belly of the Buddha is also better
than those of other methods. The results illustrate that under the correct convex and concave
situation, the proposed method does well in the detail structure.

Fig. 6 and Fig.11 compare the histogram of the angular error. The propose method is
much more accurate than other methods.

Finally, we apply our algorithm to a real captured at the mountain area. The sky has
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(a) (b) (c) (d)
Figure 7: Surfaces recovered from the input image shown in the left panel of Fig.8. From
(a) to (d): ground truth, proposed algorithm, [8], [3].

(a) (b) (c) (d)
Figure 8: Frontal View of Mesh. From (a) to (d): ground truth,proposed algorithm, [8], [3].
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Figure 9: Mean angular error in each iteration.

been manually cut off. The light source direction is considered to be from the above. The
proposed method also gives a plausible result under the non-frontal illumination case. Note
that the parts with the cast shadow, the proposed method shows the potential in handling
small change in albedo.
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Figure 10: Error Map, From (a) to (c): proposed algorithm, [8], [3].
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Figure 11: Histogram of Errors, From (a) to (c): proposed algorithm, [8], [3].

(a) (b) (c)
Figure 12: Real Image, (a) is input image, (b) and (c) are heightmap from different view
point

6 Conclusions

We have presented a practical and robust framework for a shape-from-shading algorithm
which recovers stable surface estimates from a wide range ofreal and synthetic imagery.
The drawback of oversmoothed solution is overcome by applying the structure regularisa-
tion. The new framework incorporates both the structure constraint and data closeness con-
straint. In future work we intend to investigate alternative initialisations and explore how to
incorporate integrability constraints within our framework.
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