
TAYLOR, DRUMMOND: MULTIPLE TARGET LOCALISATION AT OVER 100 FPS 1

Multiple Target Localisation at over 100 FPS

Simon Taylor
http://mi.eng.cam.ac.uk/~sjt59

Tom Drummond
http://mi.eng.cam.ac.uk/~twd20

Department of Engineering
University of Cambridge
Cambridge, UK

Abstract

This paper presents a method for fast feature-based matching which enables 7 in-
dependent targets to be localised in a video sequence with an average total processing
time of 7.46ms per frame. We extend recent work [14] on fast matching using His-
togrammed Intensity Patches (HIPs) by adding a rotation invariant framework and a tree-
based lookup scheme. Compared to state-of-the-art fast localisation schemes [15] we
achieve better matching robustness in under a quarter of the computation time and re-
quiring 5-10 times less memory.

1 Introduction
Finding points in different views of a scene which correspond to the same real world loca-
tions is a fundamental problem in computer vision, and a vital component of applications
such as automated panorama stitching (e.g. [2]), image retrieval (e.g. [13]) and object local-
isation (e.g. [7]).

A common theme in many successful approaches to these problems is the extraction of
a set of local features from images to be matched. An overall match between two images
can then be established by combining information from many local feature correspondences.
The use of information from many local matches adds redundancy and allows the methods
to cope with partial occlusion and some incorrect correspondences.

The first stage of all state-of-the-art matching schemes is to apply interest region detec-
tion to factor out common imaging transformations. The Harris corner detector [4] has been
used frequently, but modern methods commonly use more expensive searches for scale-space
interest regions such as the DoG detector [7]. Finding affine-invariant interest regions has
also been extensively studied [8, 9]. A canonical orientation can be assigned to an interest
region, for example by considering the blurred gradient at the centre of the region [2].

The most basic representation of the interest region is obtained by extracting a pixel patch
from the canonical frame that has been assigned. Simple patch-matching schemes such as
Normalised Cross Correlation (NCC) or Sum-of-Squared Differences (SSD) do not perform
well when subject to the small registration errors introduced by interest region detectors, and
hence a more complicated matching scheme is usually employed. Two broad approaches
have been studied in the literature. The first class of methods perform further processing
on the extracted patches to compute a feature descriptor vector which is ideally equal for
different views of the same feature. The second class of methods treats the matching problem

c© 2009. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

BMVC 2009 doi:10.5244/C.23.58

Citation
Citation
{Taylor, Rosten, and Drummond} 2009

Citation
Citation
{Wagner, Reitmayr, Mulloni, Drummond, and Schmalstieg} 2008

Citation
Citation
{Brown, Szeliski, and Winder} 2005

Citation
Citation
{Schmid and Mohr} 1997

Citation
Citation
{Lowe} 2004

Citation
Citation
{Harris and Stephens} 1988

Citation
Citation
{Lowe} 2004

Citation
Citation
{Matas, Chum, Urbana, and Pajdlaa} 2004

Citation
Citation
{Mikolajczyk and Schmid} 2002

Citation
Citation
{Brown, Szeliski, and Winder} 2005



2 TAYLOR, DRUMMOND: MULTIPLE TARGET LOCALISATION AT OVER 100 FPS

Figure 1: Four frames from a sequence demonstrating independent multiple object localisa-
tion. No frame-to-frame tracking is performed; the objects are localised in each frame. The
mean total computation time per frame is 7.46ms using a single core of a 2.4GHz CPU.

as one of classification, and can obtain matches with very little computation on the input
patches after classifiers for each database feature have been learnt in an offline training stage.

David Lowe’s SIFT method [7] is one of the most common descriptor-based approaches.
SIFT uses blurring and soft-bin histogramming of local gradients to extract a descriptor
vector which is robust to the errors introduced by interest region detection and orientation
assignment. Many other approaches to transforming an image patch into a feature vector
have been proposed, such as GLOH [10], MOPS [2], and CS-LBP [5]. Winder and Brown
applied a learning approach to find optimal parameters for these types of descriptor [16].

Lepetit et al. [6] demonstrated the viability of the alternative matching-by-classification
approach by showing that an offline training phase could be used to train randomised tree
classifiers for features. The Ferns method [11] uses a different classifier with improved
performance. Both of these methods only require a small number of simple pixel tests on the
runtime images to classify features, and hence require very little computation. However the
classifiers represent joint distributions of the tests and so have large memory requirements.

Both the SIFT and Ferns approaches as originally presented require too much memory
and computation to be suitable for real-time applications on small devices such as mobile
phones. Recent work by Wagner et al. [15] adapted both approaches to make them suitable
for low-powered platforms. A key change to both methods was replacing the expensive scale-
space search for interest regions with the very efficient fixed-scale FAST-9 detector [12],
and instead achieving scale invariance at runtime by ensuring the database contains features
from multiple scales. Their optimised methods were both able to localise a planar target in
a 320×240 image in a total frame time of around 5ms on a desktop PC. The technique we
propose achieves more robust localisation on the same test sequences and reduces both the
total frame time and memory requirements by a factor of more than 4.

Our approach is based on simple pixel patches extracted from around interest points.
Although SSD-based matching is not robust when subject to small registration errors, reg-
istration errors do not affect all pixels equally; samples from the interior of large regions of
solid colour in a patch are more robust to registration errors. We employ a training phase to
learn a model for the range of patches expected for each feature using independent per-pixel
distributions, which we refer to as a Histogrammed Intensity Patch (HIP). This model allows
runtime matching to use simple pixel patches whilst providing sufficient viewpoint invari-
ance to handle registration errors from interest point detection. The histograms are quantised
to give a small binary representation that can be very efficiently matched at runtime.

In previous work [14] we introduced the approach and used the efficient FAST-9 detector
to factor out translation changes. We trained independent sets of features from many differ-
ent viewpoint bins covering scale, rotation and affine variations, which resulted in large

Citation
Citation
{Lowe} 2004

Citation
Citation
{Mikolajczyk and Schmid} 2005

Citation
Citation
{Brown, Szeliski, and Winder} 2005

Citation
Citation
{Heikkilä, Pietikäinen, and Schmid} 2009

Citation
Citation
{Winder and Brown} 2007

Citation
Citation
{Lepetit and Fua} 2006

Citation
Citation
{Ozuysal, Fua, and Lepetit} 2007

Citation
Citation
{Wagner, Reitmayr, Mulloni, Drummond, and Schmalstieg} 2008

Citation
Citation
{Rosten and Drummond} 2006

Citation
Citation
{Taylor, Rosten, and Drummond} 2009



TAYLOR, DRUMMOND: MULTIPLE TARGET LOCALISATION AT OVER 100 FPS 3

databases of around 13,000 features for a single target. Despite the large database size, a
simple indexing scheme combined with the binary representation’s efficient matching score
enabled localisation of a target in a total frame time of around 1.5 milliseconds.

This paper presents a number of significant improvements to the approach. Firstly canon-
ical orientation computation is added to the interest point detection stage, allowing the num-
ber of features for a target to be reduced by a factor of around 15. A novel two-pass approach
to training accounts for errors related to interest point detection and orientation assignment,
and allows us to choose efficient methods for those stages without sacrificing robustness of
the overall system. A tree-based matching scheme is introduced to exploit common infor-
mation in different features and prevent the need for an exhaustive comparison against all
database features. Finally a framework for rapid independent multiple-target localisation
using HIPs is presented.

2 Training Features for a Target

As in the Ferns [11] approach we utilise a training phase to reduce the amount of computation
required at runtime. We use a training set of views of the entire target covering the range
of viewpoints for which localisation is desired. The set of views is artificially generated by
warping a single reference image.

For maximum runtime performance we avoid scale or affine-invariant interest region
detectors and instead train independent sets of features for different viewpoint “bins”, each
of which cover a small range of scale and affine viewpoint parameters. The experiments in
this paper use 9 scale bins in total, 3 per octave. In practice we only use one range of affine
parameters representing viewpoints centred on a direct view of the target but including out-
of-plane rotations of up to 40 degrees in all directions. This single set of affine parameters
enables reasonable matching beyond this range, but additional extreme affine viewpoint bins
could be added if required.

Around 1000 images are generated for each viewpoint bin. Each image is generated by
warping the reference image with a random camera-axis rotation and randomly chosen scale
and affine parameters from within the range of the viewpoint bin. Additionally a small ran-
dom gaussian blur and pixel noise is added so the training set more accurately represents
the poor quality images likely at runtime. Our current implementation takes around 20 min-
utes to generate all the training images for a typically-sized target, and uses large kernels
convolved with the reference image to avoid aliasing artifacts.

The images in the training set are similar to the frames we expect at runtime, although
as they are warped views of the entire target they are often larger than standard camera
resolutions. To ensure all possible camera views contain sufficient features for localisation
we split the viewpoints into 200×200 pixel regions defined in a viewpoint reference frame
which is taken as an unrotated view of the target from the centre of the viewpoint bin.

A two-stage training approach is used to identify repeatable features in each region and
build feature models for them. The first stage is to run interest point detection and orienta-
tion assignment on all of the training images. The position and orientation of each detection
and the appearance of the surrounding image region is stored in a structure termed a subfea-
ture. The second stage then clusters subfeatures based on position and orientation to identify
repeatable features, and builds a Histogrammed Intensity Patch model for each feature by
combining the appearance information from the subfeatures in each cluster.

Citation
Citation
{Ozuysal, Fua, and Lepetit} 2007



4 TAYLOR, DRUMMOND: MULTIPLE TARGET LOCALISATION AT OVER 100 FPS

Figure 2: Left: The 8×8 sample grid used for the HIPs and the 5 sample locations selected
for indexing, relative to the FAST-9 interest point (shown by the grey circle). Right: The
orientation assignment scheme uses a sum of the gradients between opposite pixels in the
16-pixel FAST ring.

2.1 Selecting Repeatable Feature Positions and Orientations

Runtime performance considerations led us to select FAST-9 [12] as the interest point de-
tector. Typical approaches to assigning orientation require computationally expensive blur-
ring [2] or histogramming [7] and would add significant computation to the runtime process-
ing. Instead we simply sum gradients computed between opposite pixels in the 16-pixel ring
used in FAST corner detection, as shown in Figure 2. The directions are fixed so the x and y
components of the orientation vector can be computed very quickly from weighted sums of
the 8 pixel differences.

We run FAST-9 on each training image within a viewpoint bin and represent the 35
highest-scoring corners from each 200×200 region with subfeatures. Proportionally fewer
subfeatures are extracted from smaller regions at the edges of the viewpoint reference frame.
For smaller scale viewpoint bins where the entire target is under 200×200 pixels a 35 cor-
ner minimum is enforced which effectively increases the feature density for these smaller
targets. The orientation measure of Figure 2 is also computed at each detected corner. The
position (xr, yr) and orientation θr of the subfeature in the coordinate system of the view-
point reference frame can be computed as the warp used to generate the training image is
known.

The appearance of the subfeature is represented by a sparsely-sampled quantised patch.
We use a square 8×8 sampling grid centred on the interest point, with a 1-pixel gap between
samples, as shown in Figure 2. Before sampling the pixel values the sampling grid is first
rotated so that it is aligned with the detected orientation of the subfeature. The 64 samples
are then extracted with bilinear interpolation, normalised for mean and standard deviation to
give lighting invariance, and quantised into 5 intensity bins. The 5-bit index value explained
in Section 3.2 is also computed and stored in the subfeature.

The most repeatable feature positions and orientations for a viewpoint bin appear as
dense clusters of subfeatures in the (xr, yr, θr) space when all the training images in the bin
have been processed. Every subfeature is considered as the potential centre of a HIP feature,
and the set of other subfeatures (from other training images) that lie within a certain distance
of the centre is found. We manually decide the allowable distance; in this paper we allow 2
pixels of localisation error and 10 degrees of orientation error. Sets of subfeatures given these
allowed distances share enough similarity in appearance to be represented by a single HIP
feature in a target database. The largest set of subfeatures represents the most repeatably-
detected feature, and will be the first feature we select to add to the database. Sets continue

Citation
Citation
{Rosten and Drummond} 2006

Citation
Citation
{Brown, Szeliski, and Winder} 2005

Citation
Citation
{Lowe} 2004



TAYLOR, DRUMMOND: MULTIPLE TARGET LOCALISATION AT OVER 100 FPS 5

to be selected in a greedy manner, disregarding any which overlap already added HIPs. We
continue adding features until the average number of subfeatures per training image region
which are represented in the database has reached a specified fraction of the number of
subfeatures detected. We set this parameter to 0.5 in our experiments. This criterion will
naturally compensate for inaccuracies in interest point detection and orientation assignment
by adding multiple database features to represent a single cluster if the errors are too large.
Hence our use of an inexpensive and inaccurate orientation assignment scheme may result
in more features being added to the database but should not cause a major degradation in
matching robustness. The trade-off between robustness of matching and database size can be
made by adjusting the parameters for desired corner density and desired fraction of corners
in the database.

2.2 Creating HIPs from Subfeature Sets
After a particular set of subfeatures has been selected for addition to the database, quantised
patches from the subfeatures are combined to give the Histogrammed Intensity Patch repre-
sentation for the feature. The HIP model contains 64 independent histograms of 5 quantised
intensity levels; one histogram for each sample of the quantised patches. The histograms
are empirical distributions of the quantised intensity in a particular sample across all the
subfeatures in the set. Thus samples which have a consistent quantised level in all of the
constituent subfeatures will have sharply peaked histograms in the HIP. To save on memory
and computation required for matching we quantise the histograms to a binary representa-
tion. Histogram bins with probabilities less than 5% are rare bins and represented by a 1,
and other bins by a 0. A single HIP requires 5 bits for each of 64 samples, a total of 40 bytes.
We can refer to each bit of a database HIP D as Di, j where i ∈ {0, . . . , 63} is the sample
number and j ∈ {0, . . . , 4} is the quantised intensity level.

The process of extracting subfeatures from training images, finding the largest subfeature
sets and building the HIP representations takes less than 5 minutes on a desktop machine for
a typical target with around 10000 images in the training set.

3 Runtime Matching
We use a fixed-scale detector to avoid a dense scale space search at runtime but we still find
it useful to build a sparse image pyramid by half-sampling the input image twice to obtain
half and quarter-scale images. As well as having significantly reduced blur, which improves
repeatability of the fixed-scale FAST detector, these sub-sampled images also enable match-
ing over a wider range of scales as features can still be detected in the reduced images if the
target scale in the input image is larger than the trained range. Using half-sampling by aver-
aging 4 pixels for each 1 of the reduced image permits a very efficient SIMD implementation
which produces both reduced images from a 640×480 frame in under 0.1ms.

The runtime images are treated similarly to those from the training set: FAST-9 is used
to extract the highest scoring corners from the images, the orientation assignment scheme
of Figure 2 is employed and a patch is extracted from the rotated sparse sampling grid and
normalised for mean and standard deviation. We use bilinear interpolation with precomputed
pixel positions and weights in 2 degree increments so the additional cost of rotation normal-
isation is minimal, and find around 150 corners from the full scale image and 75 from each
of the reduced-scale is sufficient for excellent matching robustness.



6 TAYLOR, DRUMMOND: MULTIPLE TARGET LOCALISATION AT OVER 100 FPS

For efficient matching the normalised patch is converted to a binary representation R.
This is slightly different to the database feature D as it represents just a single patch. Like
D, we use a 320-bit value but R has exactly one bit set for each pixel, corresponding to the
intensity bin for each sample in the patch:

Ri, j =

{
1 if B j < RP(xi,yi) < B j+1

0 otherwise.
(1)

where RP(xi,yi) is the value of sample i in the normalised runtime patch, and B j is the
minimum normalised intensity value of histogram bin j.

The dissimilarity score we use to rank correspondences is computed in the same way as
our earlier system [14]. In brief; although the binary HIP models do not allow a true likeli-
hood computation as they are not correctly normalised, an approximation which is sufficient
to classify matches can be obtained from a count of the number of samples in the runtime
patch which fall into the rare bins in a HIP. This can be computed with bitwise operations on
the binary representations of D and R - the error count is simply the number of bits where
both Di, j and Ri, j are equal to 1. By packing the bits corresponding to the same intensity
levels into 64-bit integers Dj and Rj and using the fact that only one of the Ri, j bits will be
set for each sample i, the error count can be obtained very efficiently by a bit-count on a
64-bit integer:

e = bitcount((D0⊗R0)⊕ ...⊕ (D4⊗R4)) (2)

where ⊗ denotes bitwise AND and ⊕ denotes bitwise OR. Currently the parallel bit-count
method from [1] is used which is slightly faster than the 11-bit lookup table used in [14].

We use two thresholds for determining matches. Matches with e ≤ 2 are treated as pri-
mary matches, whilst those where 2 < e≤ 4 are secondary matches. As this is a classification-
based approach it is possible for a single runtime patch to generate more than one match.
This is an advantage as in the case where real world features look genuinely similar we
would like to add matches reflecting all possibilities to the set used for robust estimation.
Descriptor-based approaches usually only treat the nearest neighbour as a match.

3.1 Tree-based Search
We improve the scalability of our approach and avoid the need to compare every runtime
match against every database feature by making use of similarities between HIPs. Two
similar-looking features in the database are likely to share many rare bins (1 bits) in their
HIP representations. A lower bound on the number of errors between a runtime patch and
the two features can be obtained by computing the error score between the patch and the
ANDed binary representations of the two features. If this error score is over the threshold
for matching then matches to both features can be rejected with only one test.

The use of ANDed bitmasks to reject entire sets of features can be used to build a binary
tree. Initially the number of common bits between all pairs of HIPs is computed. The pair
with the greatest overlap is converted into a parent feature containing the ANDed masks. The
parent is added to the set of root features and the two original features become child nodes
of the parent. The process of combining the root features with the most overlap is repeated
until the root features which remain do not share any 1 bits in common. Our implementation
builds a tree for a typically-sized database of 700 features in under a second by maintaining
a sorted list of the pairs of HIPs with the greatest overlap, which only needs to be sparsely
updated when a pair is combined.

Citation
Citation
{Taylor, Rosten, and Drummond} 2009

Citation
Citation
{AMD} 

Citation
Citation
{Taylor, Rosten, and Drummond} 2009



TAYLOR, DRUMMOND: MULTIPLE TARGET LOCALISATION AT OVER 100 FPS 7

The tree-based search enables all matches under the threshold to be retrieved from the
entire database without requiring an exhaustive comparison. As we use a binary tree the num-
ber of additional parent features is almost exactly equal to the number of original database
features, so the method requires around twice the memory of a linear search.

3.2 Indexing
Our previous work [14] used a 13-bit index to reduce the exhaustive search. The combination
of smaller rotationally-invariant databases and the novel tree-based lookup method make a
full search a real possibility. However if matching speed is of key importance an index can
be used to further reduce the matching time at the cost of more memory usage. We use a
5-bit index in this paper.

The 5 samples shown in Figure 2 are used to compute an index number. The samples
selected for the index are quantised to a single bit, set to 1 if the pixel value is above the mean
of the patch, and concatenated to form a 5-bit integer. The value is used to index a lookup
table of sets of HIPs, and the error score is only computed against the HIPs in the entry of
the table with the matching index. The features in each index bin can also be grouped using
the binary tree approach of section 3.1 to further reduce the number of comparisons required
at runtime.

The training phase is used to decide the index bins that a feature should appear in. Ev-
ery subfeature used to build a HIP model also contains the index value computed from the
training image it appeared in. The most common indices for a particular HIP are selected
until at least 80% of its constituent subfeatures have their index value included in the set. As
an index bin only contains a subset of the database it is possible that matches will be missed
when the index scheme is employed.

3.3 Robust Multiple Target Pose Estimation
For the single targets used in [14] it was sufficient to sort all of the matches by error score
and apply a standard robust estimation framework such as PROSAC [3]. This approach does
not scale well to multiple targets as it would require a separate set of PROSAC iterations for
each target in the database. We make use of the target, scale bin, and reference orientation
associated with each HIP to bin matches into coarse viewpoints which they support. The
viewpoints with the most primary matches are considered first. We always choose the top 5
viewpoints for further consideration, and additionally the top two for each target providing
they have enough matches to allow a pose to be estimated.

All matches from the viewpoint being considered (and those from neighbouring scale
and orientation views) are added to a set of potential matches. We then apply viewpoint
consistency constraints to identify the primary match within this set with the largest number
of consistent matches. The primary match is consistent with another match if the distance
between the matches dm is close to the expected distance de given the scale bin of the primary
match: 0.4de < dm < 1.5de. The direction of the vector between the matches must also be
consistent with the reference rotation of the primary patch to within 30 degrees. We allow
quite large errors as often features correctly match outside of their viewpoint range, and also
the expected values assume a straight-on view of the target which may not be true of the input
frame. If the biggest consistent set within a viewpoint has more than 6 matches we apply
PROSAC to obtain a candidate homography. This is optimised using all of the matches in the
viewpoint bin, and if a significant number of inliers are found it is further optimised using

Citation
Citation
{Taylor, Rosten, and Drummond} 2009

Citation
Citation
{Taylor, Rosten, and Drummond} 2009

Citation
Citation
{Chum and Matas} 2005



8 TAYLOR, DRUMMOND: MULTIPLE TARGET LOCALISATION AT OVER 100 FPS

 

 

 

 
Without Indexing
With Indexing

C
om

pu
ta

tio
n

T
im

e
(m

s)

R
ob

us
tn

es
s

(%
)

M
em

or
y

U
sa

ge
(K

B
)

AdAdAd
Boo

k
Boo

k
Boo

k
CarsCarsCars M

ap
M

ap
M

ap
Pan

o
Pan

o
Pan

o
Pho

to
Pho

to
Pho

to

Vien
na

Vien
na

Vien
na

M
ea

n
M

ea
n

M
ea

n
00

0.5

1

1.5

2

95

96

97

98

99

100

100

200

300

400

Figure 3: Results on the 7 data sets from [15]. The computation time graph shows the total
processing time per frame on a 2.4GHz CPU. Robustness is measured as the percentage of
frames where a pose with more than 10 inliers was found.

the entire set of matches. If a pose for a target with a large inlier set is found we remove any
matches from runtime patches explained by the homography and repeat the viewpoint based
voting and consistency checks with those that remain. This enables all targets present in the
scene to be matched, but stops quickly as soon as the remaining matches do not indicate
the presence of other targets. The use of high-level consistency checks also ensures the
expensive step of checking candidate homographies against all potential matches only occurs
when we are reasonably confident the target is visible in the image.

4 Results

4.1 Comparison to Wagner et al. [15]
HIP databases were trained for each of the 7 targets used by Wagner et al. for the evaluation
of their cut-down SIFT and Ferns implementations optimised for small devices. The resolu-
tion of the sequences is 320×240. The results we achieve with and without indexing (both
methods using the tree-based lookup) are plotted in Figure 3.

The average frame time reported by Wagner et al. on these sequences is close to 5ms for
both Ferns and SIFT approaches when run on a 2GHz CPU. Even accounting for the slightly
increased clock speed of our test machine (2.4GHz) our method is over 3.5 times faster
without indexing, and more than 4.5 times faster when using a 5 bit index. The number of
frames localised is improved from around 96% reported in [15] to over 99.5% with our HIPs
approach. Indexing does not seem to make a significant difference to localisation robustness
on these datasets. The implementations of [15] used around 1MB of memory per target for
the databases and associated indexing structures. Without indexing our approach offers a
memory saving of a factor of around 10. With the 5-bit index the memory requirement of
our method approximately doubles, so still offers a factor of 5 reduction over the cut-down
Ferns and SIFT implementations.

4.2 Performance With Multiple Targets
To investigate the scalability of our method as the number of database features and targets
is increased we ran our runtime matching implementation on the 640×480 video sequence
shown in Figure 1 which includes all 7 of the targets. We started with only the features for

Citation
Citation
{Wagner, Reitmayr, Mulloni, Drummond, and Schmalstieg} 2008

Citation
Citation
{Wagner, Reitmayr, Mulloni, Drummond, and Schmalstieg} 2008

Citation
Citation
{Wagner, Reitmayr, Mulloni, Drummond, and Schmalstieg} 2008

Citation
Citation
{Wagner, Reitmayr, Mulloni, Drummond, and Schmalstieg} 2008



TAYLOR, DRUMMOND: MULTIPLE TARGET LOCALISATION AT OVER 100 FPS 9

 

 

 

 
Indexed, Match
Indexed, Total
No Index, Match
No Index, Total

Indexed
No Index

T
im

e
(m

s)

Fr
am

es
L

oc
al

is
ed

Number of FeaturesNumber of Features
0

0
0

5

10

15

680

690

700

710

720

20002000 40004000 60006000

Figure 4: Scalability results on the sequence of Figure 1. Left: Matching and Total Frame
Times. Right: Number of frames where “Ad” target is localised.

the “Ad” target in the database, and added the other targets one at a time. The total frame
time and the time taken in the match lookup stage alone were recorded. Another parameter of
interest was how the robustness of the matching is affected by including more targets in the
database, so we also recorded the number of frames in which the “Ad” target was localised.
The results were calculated both with and without indexing and are shown in Figure 4. In
these tests we increased the number of corners extracted at runtime to 400 from the full frame
and 200 from each of the sub-sampled images, as we found the single corner threshold for
the entire frame caused the lower-contrast targets to have too few features detected in some
frames. Enforcing a spread of corners in the runtime frame could be a better solution and
should work with fewer runtime corners, giving a corresponding reduction in matching time.

The speed results appear to show the matching time increasing almost linearly despite
the tree-based lookup. It could be that even with all 7 targets in the database there are not
enough overlapping features to fully exploit the potential for log(N) scaling of the binary
tree. It would be interesting to investigate the behaviour as the database is increased to a
much larger number of features. The index clearly helps to reduce the matching time, and
potentially an index with more bits could be used if matching time is of utmost importance.

The right side of the figure shows there is a slight performance penalty when the database
contains multiple targets. However after a few targets have been added to the database, the
addition of further ones does not make performance significantly worse. As expected, the
approximation introduced by the indexing scheme leads to some potential matches not being
identified, and results in fewer frames being successfully localised. However the penalty is
minimal considering the speed increase obtained by using an index.

5 Conclusions and Future Work

We have proposed some significant improvements to our earlier matching scheme based on
Histogrammed Intensity Patches. A simple orientation computation and a training frame-
work which is able to naturally deal with inaccuracies in orientation assignment has enabled
database sizes to be significantly reduced. A novel binary tree lookup scheme allows an
exact search for low-threshold matches without requiring exhaustive comparison. Finally
viewpoint consistency constraints have been employed to implement a scalable multiple tar-
get localisation framework. Comparison with state-of-the-art fast localisation schemes has
demonstrated that our method offers faster performance and lower memory usage whilst also
successfully localising the target in more frames of the test sequences.



10 TAYLOR, DRUMMOND: MULTIPLE TARGET LOCALISATION AT OVER 100 FPS

Future research will investigate reducing training time, learning optimal values for var-
ious parameters in the method (such as sample layout, number of samples and quantisation
levels), and scalability tests with far larger image databases. We also propose investigating
using image measurements other than intensity in the same binary-histogrammed frame-
work; for example samples could also include a histogram of quantised gradient directions
or quantised colour. The resulting matching scheme would then naturally give more weight
to any of the parameters which were found to be consistent for a particular sample in a
feature.

6 Acknowledgements
This research is supported by the Boeing Company.

References
[1] Software optimization guide for AMD64 processors. URL http://www.amd.

com/us-en/assets/content_type/white_papers_and_tech_docs/
25112.PDF.

[2] M. Brown, R. Szeliski, and S. Winder. Multi-image matching using multi-scale ori-
ented patches. In Proc. IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 510–517, 2005.

[3] Ondřej Chum and Jiří Matas. Matching with PROSAC - progressive sample consen-
sus. In Proc. IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 220–226, 2005.

[4] C Harris and M Stephens. A combined corner and edge detector. In Proc. of the 4th
ALVEY Vision Conference, pages 147–151, 1988.

[5] Marko Heikkilä, Matti Pietikäinen, and Cordelia Schmid. Description of interest re-
gions with local binary patterns. Pattern Recogn., 42(3):425–436, 2009.

[6] V. Lepetit and P. Fua. Keypoint recognition using randomized trees. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 28(9):1465–1479, Sept. 2006.

[7] David G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 2:91–110, 2004.

[8] J. Matas, O. Chum, M. Urbana, and T. Pajdlaa. Robust wide-baseline stereo from
maximally stable extremal regions. Image and Vision Computing, 22(10):761–767,
September 2004.

[9] Krystian Mikolajczyk and Cordelia Schmid. An affine invariant interest point detector.
In Proc. 7th European Conference on Computer Vision, Copenhagen, Denmark, pages
128–142. Springer, 2002.

[10] Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation of local de-
scriptors. IEEE Trans. Pattern Anal. Mach. Intell., 27(10):1615–1630, 2005.

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25112.PDF
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25112.PDF
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25112.PDF


TAYLOR, DRUMMOND: MULTIPLE TARGET LOCALISATION AT OVER 100 FPS 11

[11] M. Ozuysal, P. Fua, and V. Lepetit. Fast keypoint recognition in ten lines of code. In
Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, June 2007.

[12] Edward Rosten and Tom Drummond. Machine learning for high speed corner de-
tection. In 9th Euproean Conference on Computer Vision, volume 1, pages 430–443.
Springer, April 2006.

[13] Cordelia Schmid and Roger Mohr. Local greyvalue invariants for image retrieval. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19:530–535, 1997.

[14] Simon Taylor, Edward Rosten, and Tom Drummond. Robust feature matching in 2.3µs.
In IEEE CVPR Workshop on Feature Detectors and Descriptors: The State Of The Art
and Beyond, June 2009.

[15] Daniel Wagner, Gerhard Reitmayr, Alessandro Mulloni, Tom Drummond, and Dieter
Schmalstieg. Pose tracking from natural features on mobile phones. In Proc. ISMAR
2008, Cambridge, UK, Sept. 15–18 2008.

[16] Simon A. Winder and Matthew Brown. Learning local image descriptors. In Proc.
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
2007.


