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Abstract

Boundary detection is a fundamental problem in computer vision. However, bound-
ary detection is difficult as it involves integrating multiple cues (intensity, color, texture)
as well as trying to incorporate object class or scene level descriptions to mitigate the am-
biguity of the local signal. In this paper we investigate incorporating a priori information
into boundary detection. We learn a probabilistic model that describes a prior for object
boundaries over small patches of the image. We then incorporate this boundary model
into a mixture of multiscale conditional random fields, where the mixture components
represent different contexts formed by clustering overall spatial distributions of bound-
aries across images and image regions (vistas). We demonstrate this approach using
challenging real-world road scenes. Importantly, we show that recent spectral methods
that have been used in state-of-the-art boundary detection algorithms do not generalize
well to these complex scenes. We show that our algorithm successfully learns these
boundary distributions and can exploit this knowledge to improve state-of-the-art bound-
ary detectors.

1 Introduction

Detection of natural [14] or occlusion [11] boundaries is a fundamental problem in computer
vision. Unlike edge detection, boundary detection involves integrating multiple cues (inten-
sity, color, texture) along with trying to incorporate object class or scene level descriptions
to mitigate the ambiguity of the local signal. Recent work shows that boundary detection
performance remains low on most real world datasets [18].

Despite these difficulties boundary detection remains an important component of many
vision pipelines. For instance, boundary information has been used as the basis for feature
vectors to facilitate recognition [2, 22], as a measure of region affinity for segmentation [17]
and as the basis for energy terms in random field models [21].

Traditional methods for finding boundaries focused on edge detection models with white
noise [5]. However, while these assumptions still prove useful under certain conditions they
have been shown to generalize less reliably to natural images [14]. Therefore, recent work on
boundary detection has taken three notable directions: First, improving the low-level unary
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Figure 1: Non-stationary boundary density. Example patches from different regions of im-
ages of road scenes. Note the change in boundary density according to the distribution of
objects in the scene. For example, the centre tends to me more cluttered. These road scene
images are examples of training data adapted from publicly available road sequences [3].

detection has focused on learning statistics [14] or exemplars [6] of boundaries from large
datasets using hand-labeled ground truth. Second, there has been much work on mid-level
cues including multi-scale detection [18, 25], curvilinear continuity [8], contour completion
[16, 19] and other grouping cues [1]. Lastly, recent work has integrated higher order scene
cues [11] or the information from the eigen-spectrum of the image [13].

Until recently, the evaluation of boundary detection performance has tended to concen-
trated on images with low scene complexity composed of only a few object instances and
recent boundary detection analysis [18] shows that performance on scenes with higher scene
complexity is considerably lower. However, the scene similarity in the datasets used in [18]
tends to be low.! Consequently, it is difficult to learn scene priors for boundaries without first
learning something about the objects in the scene. Alternatively, recent work [15] has shown
that for datasets with greater scene consistency [3] it is possible to learn a distribution over
the density of boundaries in the image and use this to successfully guide segmentation. The
work in [15] exploits the fact that when a 2D image is a projection of a 3D scene, perspective
effects result in an uneven distribution of the sizes of object classes, and therefore an uneven
distribution in the density of object boundaries across the scene. This observation is illus-
trated in Figure 1. This suggests learning a non-stationary model for boundary priors. To
achieve this we draw on two methods that have proved effective for image labeling problems
[9, 10] and learn a mixture of multiscale conditional random fields.

The layout of the paper is as follows: In Section 2 we outline the boundary distribution
model of [15], which we take as our model of boundary patches. In Section 3 we extend this
to a hierarchical model, where we learn clusters on the distribution of boundaries across an
image. In Section 4.1 we benchmark a variety of boundary detection methods, along with
our new prior, on a fully labeled image database with high scene complexity.

2 A Generative Model for Boundary Patches

We begin by describing a generative model for boundary patches. This is a Clustered Latent
Trait model (CLT), as has been used previously in [15] to model boundary distributions at the
image level. We represent the n’th boundary patch, which includes P pixels, by a vector of
discrete variables x,, = [x,; . . .xnp]T, where x,,, takes the value 1 where a boundary is present,
and 0 otherwise. x,,, is taken to be produced by a generative process as depicted in Figure 2a.
Each patch is assigned first to a cluster c¢,, which may take 1 of K, values, and is drawn from

lDataset[#images]: CMU[30] motion boundary dataset [23], MSRC[519] object dataset [21], PASCAL Chal-
lenge 07[422] segmentation competition [7] and LabelMe database (Boston houses 2005)[218] [20].
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Figure 2: Graphical Models. a) A Clustered Latent Trait (CLT) model for patches. The plates
denote a set of N discrete image patches each with P pixels. b) Hierarchical CLT model. The
plates denote a set of I images each with a set of V vistas (a grid of non-overlapping large
image regions), each with a set of N discrete image patches. The CLT model for image
patches can be seen marked with a dashed plate in each model. ¢) Embedding the same
variables in a CRF conditioned on the observations z (see Equation 6).

a multinomial distribution with parameters 7. Each patch is also assigned a position h,, in
a continuous subspace of dimension J, where h,, is drawn from a zero mean unit covariance
Gaussian distribution, and may be taken to be a parameterizations of the kinds of variation
that can be applied to the patch. Having chosen ¢, = k and h,,, a continuous activation a,, is
produced via a linear combination of the mean i for cluster &, and factors £y ... £y, for the
same cluster (which form the rows of F.), where the latter are weighted by the variable h,,:
a = U, +F h. These activations are then converted to probabilities by passing them through
the logistic sigmoid function, and x, is generated by taking independent samples at each
pixel. We can thus write the entire generative process as:

Pr(ch,=k) = my (1)
Pr(hn) = %[0,1] (2)
Pr(an|hn,cn:k) = San(ﬂk'i‘Fkhn) 3)
P
Pr(xplan) = []Biny,[0(an)] 4)
p=1

where ¥, [B,T] represents a Gaussian in variable @ with mean 8 and covariance I. The
function 04 () denotes a probability distribution over o where all of the mass is at § and
hence describes a deterministic relationship. The function Bing[f] denotes the binomial
likelihood of observing value o given binomial parameter 3, and o is the logistic sigmoid
function, o(a) = 1/(1+exp(—a)).

The CLT model can be learnt from a training set of example binary patches by using an
E-M algorithm. In the E-step, the patches are assigned to the MAP cluster ¢,, and position in
the latent space h,, given the current estimates of the parameters 6 = {7, 1. x,F1. x}. In
the M-step, these parameters are then updated by using a quasi-Newton method to estimate
the MAP of the data likelihood and a hyperprior, p, set to influence expected smoothness.
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3 A Hierarchical Multiscale CRF Model

The preceding section described a model for boundary patches. In this section, we show
how this model can be embedded in a hierarchical multiscale CRF to provide a model for
entire scene boundary images. We describe the model in two stages, first introducing the
hierarchical aspects in section 3.1, and then the multiscale ones in 3.2. Sections 3.3 and 3.4
then describe how we perform learning and inference. An overview of the different levels of
the model is provided in Figure 3.

3.1 Hierarchy

We begin by enlarging our generative model as shown in Figure 2b. Here, we imagine that we
have I images, each containing V ‘vistas’ (defined as a 4 x 4 grid of non-overlapping image
regions),” each containing N independent patches. We introduce further latent variables d
and e into the generative process, where ¢; represents which 1 of K¢ scene-clusters the image
as a whole belongs to, and d;, represents which 1 of K¢ vista-clusters vista v in image i
belongs to. These are drawn from multinomial distributions parameterized by 7¢ and ¢
respectively, where ¢ includes a separate set of multinomial parameters for each value of
e'. As before, each patch also has its own latent variable taking 1 of K¢ values and position in
a continuous latent space, which are now written c;,, and h;,, to indicate that they refer to the
n’th patch of the v’th vista in image i. We now assume that we have learned separate 1 and F
parameters for every combination of values {e;,d;,,ciyn }, and generate X;,,, by first forming
the activation a;, = U, d;.e; T Fe;n.div e;Mivn, before passing it through the logistic sigmoid
function and sampling. The entire generative model can be written as follows, where Pr,
indicates that we have here a model for the prior (as opposed to Pr,,, which will be used
later to indicate a unary term) and Mult,[f] is the multinomial likelihood of observing o
given parameters f3:

Prp,(ei,di,ci,hi,xi) = Prp,(ei)Prpr(di\ei)Prpr(ci|ei,di)Prp,(hi)Prp,(X,-|e,~,di,ci,hi)
= Muuei [”e} : HMultdiv [ﬁgl] ’ HH(Mlﬂtcivn [ﬂef‘i,d‘;} ’ %ivn [07 ID '
v vV n

H H H Biny,,, [0(@ivnp)] 5)
v n op

The model so far developed is a generative prior. However, we are interested in the
conditional probability of a boundary map given an observed image, which we shall call z;.
One possibility would be to extend our generative model of Figure 2b to include Pr(z;|x;),
and then perform inference via Bayes theorem. This is inefficient though, since we do not
require a fully generative model of images from boundary maps for our purposes. Instead,
we embed the generative model outlined in a conditional random field model (CRF), where
the conditional probabilities learned become potential terms in the CRF, and a set of unary
terms is placed between z; and each x;,,,, derived from estimates by a discriminative classifier
of Pr(xiynp|2i). The chosen form of the CRF is illustrated in Figure 2c in plate notation. The
model can be written:

Pr(e;,d;,c;, h;,X;|2;) o< Pry,(x|z;) 'Prpr(eivdizchhivxi)l <01 (ei|zi) - ¢2(dileizi)  (6)
N—_———

unary term prior term scene and vista constraints

2The idea being that a vista is a region “seen through a long, narrow avenue or passage” and it therefore repre-
sents the boundary distribution over a sub-region of the full image. This may be assumed to account for the specific
distribution of objects that may vary within one particular scene.
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2)

Figure 3: Clusters learnt at scene, vista and patch levels with the hierarchical model (bound-
ary probability maps for the means of each cluster, o (1), shown). a) Example boundary map
divided into vistas. b) Possible scene clusters (o((¢)). The cluster * is the one to which the
image belongs (see Equation 7). c) Possible vista clusters (o(u?)) corresponding to scene
cluster * (see Equation 8). d) Possible patch clusters (o (1)) corresponding to vistas i and ii
(see Equations 4 and 5). Note the varying distribution of orientations of the patch clusters.

Here, Pr,,(x;|z;) denotes the conditional probability derived from a unary classifier.
Prp,(ei,d;, i, h;, X;) is the prior probability, as in Equation 5. We note that this has an extra
weighting term, A, to control its influence. In addition, we add two extra ‘constraining’ terms
¢1 and ¢,, which directly link the scene clusters and vista clusters with the observed image.
We model these terms again using a CLT model, but now learnt over subsampled boundary
maps of entire images or vistas. The value of these terms can be found in general by setting
an arbitrary threshold 7 = 0.5 to the unary response map, and then finding the posterior value
for the particular scene and vista clusters e; and d; given that label map. In practice, we adopt
deterministic forms for these potentials, setting them to 1 for the maximum likelihood scene
and vista cluster values, and O for other values:

91(eilz;) = O, (argmax, max Pr(y (z;) |k, b, {u*, F°})) o

¢2(di‘eivzi) = Hﬁdiv(argmaxk m};aXPr(WT(Zi)|k7ha {.u'g,-vFg,- )) (8)

where y;(z) calculates the unary classifier response thresholded at 7, and Pr(yz(z;)|k, h, { ¢,
F¢}) and Pr(y:(z;)|k,h,{ /.Lfl, , Fgl, ) are further CLT distributions learnt at the image and vista
levels (and evaluated using Equations 1 to 4). Figure 3 illustrates the way the CLTs at these
and the patch level capture boundary information at different resolutions.

Because we are no longer treating the model as fully generative, there is now no reason
for the boundary patches x;,, to be fully independent, and in general we can consider over-
lapping these across the image. Figure 4a shows a possible 1-d expansion of the graph in
Figure 2¢c, where we have five overlapping patches (cq11 - ¢122) each containing 2 pixels. The

graph, contains 2 miniature vistas of three pixels each, controlled by d1; and d,.

3.2 Multiscale

The model in Figure 2c can be considered as a hierarchical mixture of CRFs (see [10]), since
the settings of the latent variables d and e control the forms of the patch potentials over the
x’s. This allows us to tailor our expectations concerning local boundary shapes depending
on the overall appearance of the image, or subregion (vista). In addition though, we would
like to embody expectations of boundary shape at multiple scales within a vista.® For this

3Particularly, we found when experimenting with synthetic data that one scale was often an insufficient cue for
boundary completion, but with two or more combined, the larger scales could help the smaller ones.
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Figure 4: Full CRF model with a) overlapping patches and b) multiple scales. a) 1-d model
of a 6 pixel image. The one scene, e, includes two non-overlapping vistas, di1,d]2, of three
pixels each. Overlapping patches of size two pixels are associated with variables ¢ and h.
The various cliques in Equation 6 are shown by the interconnections between these variables.
b) 2-d multiscale model. The 4 vistas are associated with latent variables d, and the scene
as a whole with e. The model includes overlapping patches at two scales of 2 x 2 and 3 x 3
pixels, where examples are marked respectively as {1,2,3} and {4,5} in their bottom right
corners in X. These patches are associated with latent variables in ¢' and ¢2, and all belong
to vista 1. Note that the h’s are not included and no cliques involving z are shown.

purpose, we let our patches within a vista ¢;, range over levels j = 1...L, encompassing
varying numbers of pixels. We thus write c{m to denote the latent variable associated with
the n’th patch at level j. In addition, we assume that the parameters F and p are tied across
each level, but not between levels, so we must now consider that we have not only separate
versions of these parameters for every scene and vista cluster, but also every level within
the vista (i.e. K x K¢ x K¢ x L parameter sets). Further, we can now split the prior term
in Equation 6 into separate terms for each level j, and introduce a separate weighting A ; for
each. We thus change the prior term in equation 6 to:

[1Pro(ei,di el by, xi) % ©)
J

prior term
The overlapping cliques of several sizes over the x’s produces a multiscale CRF model as
in [9]. As a whole then, it may be described as a hierarchical mixture of multiscale CRFs.
Figure 4b provides an illustrative example of the CRF formed where we have 4 vistas per
image, and 2 levels of overlapping patches within each vista (of sizes 2 x 2 and 3 x 3 pixels
respectively). For simplicity, only cliques not involving the observations z are shown.

3.3 Learning

We adopt a piecewise approach to training, as in [21]. We thus assume we have a discrimina-
tive classifier which can be trained independently to provide the unary potentials. The CLT
models for the constraint potentials, ¢; and ¢,, are simply trained on sub-sampled images
and vistas from the training set ground truth boundary labelings. This involves first train-
ing the image-level CLT, assigning image clusters to all training images, and then sampling
vistas from each group to train the vista-level CLT for that cluster. Image and vista level
clusters can then be assigned to each training example, and patches at sizes 1...L drawn from
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the ground truth to train the CLT patch models for every combination. An assumption of
independent patches is thus made during training, so that the model is as in Section 2.

3.4 Inference

Our goal during inference on image i is either to draw a sample from the posterior Pr(x;|z;),
or more generally to estimate this posterior (or its marginals at each pixel), providing a dis-
crete or a continuous boundary value at each pixel respectively. For this task, we use a
version of block Gibbs sampling which is made possible by the restricted Boltzmann ma-
chine form of the model [9], where the latent variables are independent of each other given
the labels, and vice-versa. The sampling process can be initialized by thresholding the results
of the unary classifier to set x;. Since we adopt a deterministic form of the constraint poten-
tials ¢; and ¢», we can then directly set the image cluster e;, and the vista clusters d; 1.y by
choosing the MAP values from their respective CLT models. This implicitly chooses for us
the CLT models that will be used for each patch within the image, and we can then sample
from the joint distribution by alternately picking ¢ and h values for each patch (across all
levels j), and then re-sampling the x’s. We choose to take the MAP values for the ¢’s and
h’s, although we note that we could probabilistically sample from these as well. Further, if
we chose to use soft constraining potentials on e and d, these could also be re-sampled each
iteration, making it possible to rectify an initial cluster misassignment. Finally, a discrete
sample from the posterior is generated by outputting x; after a fixed number of iterations,
and a continuous boundary map can be generated by finding the marginal for x at each pixel
given the final setting of the latent variables via Equation 6 (alternatively we could record
the x; samples drawn across a large number of iterations, and then find the frequencies of
boundary positives at each location). The process is summarized in Algorithm 1.

Algorithm 1 Hierarchical CLT Inference Algorithm

1: Input : Observed image features, z;

2: Initialize : x; unary classifier with threshold

3: Set ¢; to the MAP image cluster given x;

4: Setd; ;. v to the MAP vista clusters given x;, and ¢;
5: for all iterations do
6
7
8

for all levels j do
for all patches x;,, at level j do

Find the likelihood of patch x;,, for each setting of c{m using the MAP value
for h{vn, and the CLT model given the values of ¢; and d,,.
j J

9: Set ¢}, to its MAP value, along with its accompanying h!

wn
10: end for
11:  end for
12:  Re-sample the x;’s given the current latent variables and unary terms
13: end for

14: Output : The final sample x; and estimate of the marginal image Pr(X;)

4 Evaluation

Our evaluation is based on video sequence stills and human-labeled ground truth from the
CamVid database [3]. This consists of road scene sequences taken from the passenger seat
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of a moving car. This is a challenging dataset that includes 32 classes and ego-motion. We
follow [4] and use sequences 06RO and 16ES for training and 05VD for testing.

To learn the model presented in the previous sections we construct training data from the
set of 406 binary ground truth images. For learning scene and vista clusters we down-sample
the original image data from 720 x 960 and 180 x 240 to 36 x 48 respectively using an OR
operation. As these clusters only learn coarse distributions of boundaries it is possible to
learn them at the reduced scale. We learn the following CLT models: Images: 3 factors, 4
clusters, p=100; Vistas: 3 factors, 8 clusters, p=10; Patches at three scales 9 x 9,19 x 19 and
39 x 39 with 6 factors and 16 clusters, p=5. In a similar manner to the images, patch scales
19 and 39 are scaled to 10 x 10 for training and testing. These parameter settings were set
by hand and involve no validation set. During training we separate the boundaries for each
object class into separate training patches. This allows us to mitigate double boundaries
created by the presence of a void label at the expense of modeling boundary junctions and
close parallel edges between different classes. However the proportion of boundary junctions
in the training set is small [13] and a proper treatment of junctions is left for future work.
We also learn the weighting for the three scales setting A = {0.035,0.007,0.007} (small,
medium, large) using a subset of of 62 images of the training data for validation.

Performance on the dataset is evaluated using the precision-recall framework of [14].
The objects in the CamVid dataset are of very uneven sizes and the objects at a distance
can be separated by only a few pixels, moreover unlike the datasets in a recent comparative
study [18] the ground truth is fully labeled. We therefore show P/R curves using a distance
tolerance for boundary matching of 0.4% of the image diagonal, slightly stricter than that of
0.6% used in [18], resulting in a tolerance of 5 pixels. Again to mitigate the effect of the
void class, where a boundary can effectively be labeled twice from either side of the object,
we separate the boundaries in masks for each class and use the multi-subject framework [14]
to match between boundaries.

Results showing the improvement gained by combining our boundary distribution prior
with the BEL classifier [6] as the unary term can be seen in Figure 5f. We can see a modest
improvement along the PR curve, which is most noticeable in the low-recall/high-precision
range. There is also an improvement in the maximum f-measure score (from 0.46 to 0.47).
Figure 5 gives a qualitative comparison of unary and full CRF results for selected images.

4.1 Comparison to other algorithms

To assess the the effect of alternative techniques on this new dataset we benchmark six other
boundary detection algorithms. These include simple edge detection algorithms like MAT-
LAB’s implementation of the Canny detector and another well know scale space method
[12]*. In contrast to other datasets there is a noticeable difference in the performance of
competing algorithms. For instance, the current best performance on the Berkeley Segmen-
tation Database is the gPb algorithm [13]. However, it performs poorly here suggesting that
there is less useful information in these street scenes to be found in the spectral compo-
nents of the image, except in the low recall range where it outperforms other variants of the
Pb algorithm. While the maximum f-measure is achieved by mPb [13] its performance in
the mid recall range is low. Conversely, while the f-measure score is low the Canny detec-
tor provides very reasonable performance in certain ranges. Overall the performance of all
competing methods is low which suggests there is room for significant improvement when
considering specific complex scenes.

4Code provided by Mark Dow at http://lcni.uoregon.edu/~mark/SS_Edges/SS_Edges.html
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Figure 5: Precision Recall curves. a)-e) Precision/Recall curves for 6 competing boundary
detection methods with BEL [6] for reference. f) Precision recall curve for our method using
the BEL classifier as the unary term. Note a modest improvement along the length of the PR
curve with our CLT prior having greater effect in the regions of lower recall.

S Summary

In this paper we have introduced a novel prior for learning boundary distributions. Our
model exploits these distributions at different scales in the image to learn local models for
boundaries. We have performed boundary analysis on a new dataset and shown that state-
of-the-art algorithms perform poorly compared to other more frequently used databases.
Furthermore, we have shown for this particular database that our novel prior provides a
useful source of extra information to existing state-of-the-art unary classifiers.

However, the increase in performance is only modest and this suggests two notable direc-
tions of enquiry: Firstly, improving the learning in our model. We note that the distribution
of data to clusters is uneven with 75% of scenes in the test set being drawn from one image
cluster. The scenes in the test data are less varied than the training data and the benefit of
clustering in the model may be underestimated using this partition of the data. It is also pos-
sible to learn the full model rather than pursue piece-wise learning as we have done here, and
extend our inference algorithm to sample probabilistically from all of the latent variables. It
would also be interesting to continue our analysis for other unary classifiers and investigate
if similar improvements in performance could be achieved. Secondly, it is likely that a full
solution to the problem of boundary detection in complex scenes will use object class in-
formation [24]. This may include both class specific unary detectors as well as novel priors
based on the estimation of objects in the scene. Lastly, in future work we would like to see
if our model can be profitably extended to datasets without consistent scenes.
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a) 7+ b) ,

Figure 6: Good and Bad examples. Top row thresholded unary term. Bottom row incor-
porating prior. a)-c) Example patches where the prior has either completed boundaries or
removed clutter from the patch window. a)-b) show examples of strong boundary comple-

tion that result in better performance in the low recall range. d)-e) Examples where the prior
has removed useful boundary information.
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