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Abstract

In computer vision, matting is the process of accurate foreground estimation in im-
ages and videos. In this paper we presents a novel patch based approach to video matting
relying on non-parametric statistics to represent image variations in appearance. This
overcomes the limitation of parametric algorithms which only rely on strong colour cor-
relation between the nearby pixels. Initially we construct a clean background by utilising
the foreground object’s movement across the background. For a given frame, a trimap is
constructed using the background and the last frame’s trimap. A patch-based approach
is used to estimate the foreground colour for every unknown pixel and finally the alpha
matte is extracted. Quantitative evaluation shows that the technique performs better, in
terms of the accuracy and the required user interaction, than the current state-of-the-art
parametric approaches.

1 Introduction
Matting is a classic problem of image and video processing. Recent advances in digital
cameras have increased the interest to develop novel matting techniques in both the image
and video domain. Matting is the process of extracting foreground objects while preserving
their pixel-wise coverage in the scene. This coverage is referred to as opacity or alpha
matte. Once an accurate alpha matte is estimated, a foreground object can be seamlessly
composited onto a new background. The matting problem is inherently ill-posed. To make
it solvable for an image, skilled user interaction, in the form of a trimap, is often required
to aid the definition of foreground and background regions as shown in Fig 1. The task
becomes more challenging when image matting is extended to video sequences. Providing a
trimap for every frame in a sequence would be too tedious and time consuming. Generally
current video matting techniques restrict the requirement for manually defined trimaps to a
number of key frames and automatically generate the trimaps for the remaining frames by
interpolation. Then the matting algorithm is applied, to individual frames, to estimate the
video matte. The matting problem was first formulated by Porter and Duff [12] as linear
interpolation of distinct foreground and background images, by using an alpha channel, to
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Figure 1: Left: original image, middle: trimap and right: estimated alpha matte.

form a composite image as
Cp = αpFp +(1−αp)Bp. (1)

This equation is known as the compositing equation where, Cp, Fp and Bp are the composite,
foreground and background colours for the pixel p respectively while αp is their blending
proportion. The alpha value ranges from 0 to 1, where α = 0 defines the background while
α = 1 for the foreground. Blended pixels at the foreground boundary have intermediate al-
pha values. Equation (1) is clearly under-constrained as all the variables on the right hand
side are unknown. In a three channel colour space, like RGB, we have only three equations
to solve for seven unknowns. In the case of a studio environment, equation (1) can be con-
strained by using a uniform background, typically blue or green [14]. Enforcing a limitation
of no background colour in the foreground provides a trivial solution to the compositing
equation. In order to constrain equation (1) for natural images and videos having arbitrary
background, user interaction is required to mark some definite background and foreground
regions. This definition is referred to as a trimap, where definite foreground and background
are represented by white and black respectively while remaining unknown portions of the
image are gray as shown in Fig 1. Given a trimap, matting algorithms use local or global
image statistics of known regions to compute the alpha values for the unknown region. Ex-
isting approaches are usually parametric in the sense that they collect nearby foreground and
background colours and fit statistical models to them, such as Gaussian mixture models, to
estimate the foreground and background colour for an unknown pixel and finally the α value.

In this paper we present a novel patch based non-parametric approach for video matting.
Previously, similar approach have been successfully used to represent local image statistics
for inpainting techniques like [6, 7] and view interpolation [8]. Non-parametric patch based
sampling provide a strong mechanism to represent local image features, colours and tex-
tures which attempts to preserve the spatial information of a natural video sequence. The
proposed approach exploits non-parametric statistics for alpha matte estimation in video for
both trimap propagation and robust foreground colour estimation. Quantitative comparison
to state-of-the-art video matting techniques demonstrates that this approach reduces the error
in matte estimation and the amount of manual interaction require to define trimaps.

2 Related work

2.1 Image matting

Sample-based approaches Techniques like [4, 9, 13] fit statistical models to the local
known foreground and background pixels which are then used to estimate the foreground
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and background colour for the unknown pixel and finally compute its alpha value. In a lo-
cal window, Ruzon and Tomasi [13] modeled the known pixels as a mixture of isotropic
Gaussians. These distributions are then used to estimate all the matting variables. Hillman
et al. [9], improving on the idea of Ruzon and Tomasi, modeled the known local pixels as
anisotropic Gaussian clusters. They used principal components analysis technique to find
the major axis of these cluster which are then used for pixel-wise estimation of foreground,
background colour and alpha value. Chuang et al. [4] formulated the matting problem in a
well known Bayesian framework. Similar to [13] they used Gaussian mixtures to model the
known pixels also taking into account the already estimated values of the unknown pixels in
a local window. Alpha values are computed by using a maximum a posteriori approach. In
Corel Knockout [3] nearby known regions are assumed to be locally smooth. Alpha values
are estimated by taking the weighted average of the local known foreground and background
pixels. All of these techniques assumed that the known foreground and background regions
are locally smooth and strong correlation exists between the nearby known and unknown
pixels, raising the requirement for a precise trimap. These algorithms tend to suffer when the
local distributions overlap or the unknown region is wide. Some techniques have been pro-
posed which try to generate a good alpha matte for a coarse trimap by using global sampling.
Approaches like [2, 16] used a mixture of Gaussians to model foreground and background
colour globally. The final alpha mattes are extracted using these global distributions.

Affinity-based approaches Misclassification of colour samples is the main limitation of
sample based approaches. To overcome this problem techniques like [10, 15] based on local
affinities have been proposed. The affinities are defined in a very small window containing
immediate neighbors, where pixel correlation is strong and generally smoothness assump-
tions hold. Poisson matting [15] assumes that the intensity changes in the foreground and
background are locally smooth. The alpha matte is computed by solving the Poisson equa-
tion with a matte gradient field. Spatial partial derivatives of the compositing equation (1)
approximate the matte gradient field. Local smoothness assumptions allow the Closed-form
approach [10] to fit a linear model to the foreground and background colours in a local
window, thus defining a quadratic cost function in α . Alpha is then estimated by globally
minimising this cost function. Robust matting [17] is a hybrid of local colour sampling and
affinity approach. It applies optimised colour sampling technique to the local sparse samples
to extract higher confidence sample pairs. It combines affinity similar to [10] with the ob-
tained higher confidence pixels to get the matting energy function which is then minimized
to estimate alpha values. This hybrid approach is robust against outliers. The major disad-
vantage of affinity based techniques is their propagation behavior in α matte estimation. Due
to this approach small errors could result in large accumulated errors in the final α matte.

2.2 Video matting

Extracting a foreground object from a single image is a hard problem which becomes even
more challenging and difficult for dynamic foreground objects in a video sequences. In
general any image matting technique can be used for a video sequence by providing a trimap
on per-frame basis. Feeding an algorithm with user defined trimaps for every frame in the
sequence is tedious and prohibitively time consuming. Spatio-temporal coherence among
the consecutive frames of a sequence can be used to alleviate this difficulty. Different semi-
automated techniques have been proposed in existing matting algorithms to reduce the trimap
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Figure 2: Flow chart for the Non-parametric video matting

construction burden on the user. Often the techniques are split into two steps. In the first step
an algorithm interpolates trimap of the intermediate frames using a set of key frames with
user defined trimaps. Image matting techniques are then applied to generate alpha mattes for
the entire sequence.

Optical flow has been widely used to estimate the inter-frame motion at pixel level in a
video sequence. Previously Bayesian video matting [5] successfully utilised optical flow to
propagate trimaps from user defined key frames to the rest of the video sequence. Results
of optical flow are often erroneous especially for large blurry motions. To ensure the stable
propagation of a trimap across a sequence, another initial step is introduced. The step re-
quires the user to provide a "garbage matte" for a sequence that eliminates the foreground
object. The remaining background in the sequence is used to construct a mosaic to extract
a clean background plate. Optical flow along with the estimated background plate is used
to smoothly propagate key frame trimap to the rest of the frames in a sequence. Recently
proposed techniques based on rotoscoping [1] and graph cut [11, 18] are also been used as a
semi-automated trimap generating system for a video sequence.

3 Non-parametric patch based video matting
Our technique is split into four main steps: (1) constructing a background for every frame of
the video sequence, (2) generating a trimap for each frame using the constructed background
and the trimap of the previous frame, (3) estimating the foreground colour for every unknown
pixel using patch based sampling and (4) generating an alpha matte. The flow chart of the
technique is shown in the Fig 2.

3.1 Background construction
To construct a background for planar motion, such as when foreground object is moving
across a background, we have used a similar approach to [5]. Background is estimated for
every frame in the sequence by utilising optical flow in a very conservative fashion. First a
user defines a background region, present near the frame edges, for the few initial frames.
A background mosaic is constructed by comparing the defined background region between
the successive frames. The background plate for every frame is finally extracted from this
mosaic. If the foreground objects in the sequence do not exhibit large motion, an inpainting
technique similar to [6] can be adopted to estimate the background for the user defined fore-
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Ik Ik+1 T k Bk+1 1T k+1 2T k+1 3T k+1 T k+1

Figure 3: Trimap propagation, red pixels are unlabeled. 1T k+1 is the result of background comparison,
2T k+1 is the result of pixel-wise foreground comparison to Ik, 3T k+1 is the result of foreground patch
comparison and T k+1 is the final refined trimap.

ground region. In a studio environment, where video matting has a key importance, normally
a background image is taken after removing all the foreground objects from the scene. In this
paper we have used both, where appropriate, optical flow and studio environment to obtain
a clean background plate for every frame. Let us denote the background of the ith frame, Ii,
of the original sequence by Bi.

3.2 Trimap propagation

Unlike other techniques, where trimaps for the entire sequence are constructed by initially
providing a set of key frame trimaps, our approach automatically constructs a trimap from
the previous frame and the background plate and only requires user interaction to define a
key frame when automatic propagation fails. After obtaining a trimap, the matting algorithm
is applied to estimate the alpha values. The generated alpha matte is then used to refine the
trimap prior to its propagation to the next frame. This scheme helps to reduce the number
of key frames required and the accumulation of error. Let us denote the trimap of the ith

frame, Ii, of the original sequence by T i. Initially the user defines a fine trimap T k for the
frame Ik, normally the first frame, of the sequence. Let us represent the foreground and the
unknown pixels in the trimap, T k, by the pixel set (FU)k. To propagate the trimap to the next
frame, Ik+1, the background Bk+1 is subtracted from the frame Ik+1. All the pixels having a
difference below a pre-defined distance threshold are marked as definite background pixels
in T k+1 shown as 1T k+1 in Fig 3. The remaining pixels are now either definite foreground or
unknown denoted by (FU)k+1. The Euclidean distance between Ik and Ik+1 in RGB space
for the pixels in (FU)k ⋂ (FU)k+1 is calculated. The trimap value is propagated, from T k

to T k+1, if the pixel-wise Euclidean distance is less than the pre-defined threshold shown as
2T k+1 in Fig 3.

Normalised sum of square difference (NSSD) is used to associate a trimap label to the
pixels still unassigned in T k+1. A square patch, ψp, of dimensions n is centred at an un-
marked pixel p in the frame Ik+1. A patch set φ is constructed by localizing square patches,
dimensionally consistent to ψp, at all the pixels in the set (FU)k within a spatial radius R
to the pixel corresponding to p in the frame Ik. The value of R depends on the inter-frame
foreground object motion. If φ = /0, the pixel p is marked as a background pixel otherwise
the most similar patch, φq, to ψp in the set φ is found by

φq = arg min
φi∈φ

1
n2 d (ψp,φi) (2)

where, d (ψp,φi) is the sum of square difference between ψp and φi and n2 is the number of
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pixels in the patch for normalization. The trimap value T k+1
p of the pixel p is assigned as

T k+1
p =

 T k
q i f , d

(
Ik
q , Ik+1

p
)
≤ ε

unknown otherwise
(3)

where, T k
q is the trimap value of pixel q in the trimap T k and ε is the pre-defined distance

threshold in RGB space. The process is iterated until all the unmarked pixels are assigned
a trimap value as it is shown as 3T k+1 in Fig 3. Assuming that the body of the foreground
object is opaque, a final refining step is applied to fill in the unknown holes present within the
foreground and background regions. The step is accomplished by applying a connectivity
test to the unknown pixel. If the pixel is not 8-connected through the unknown pixels to the
foreground boundary, the pixel is given the spatially closest known label. The final trimap,
T k+1, is shown in Fig 3.

3.3 Foreground colour estimation
A similar patch based approach to that used in trimap propagation is utilized to estimate the
foreground colour for every unknown pixel in the trimap. A square patch ψp of dimensions
n is centred at an unknown pixel p. A foreground patch set θ is constructed in a similar
fashion to the patch set φ , as explained in the section 3.2, by using a search window of
radius R f and localising a patch only at the known foreground pixels. The value of R f
depends on the spatial Euclidean distance between the pixel p and the foreground boundary.
To find the most similar patch θq, the comparison is performed only between the unknown
and foreground pixels in ψp and the corresponding known foreground pixels of the patch in
θ . Let us denote these pixels by pu f . The patch θq can be found as

θq = arg min
θi∈θ

1
npu f

dpu f (ψp,θi) , (4)

where, npu f is the number of pixels pu f which is used for normalization. dpu f (ψp,θi) is the
sum of square difference in RGB space between the pixels pu f . The foreground colour, f̃ ,
for the pixel p is approximated as the colour at pixel q. The partial comparison of ψp ensures
finding similar foreground structure in the known foreground region present in the template
ψp. To avoid segmentation inaccuracies, which may arise due to the presence of noise in the
foreground region, an additional step is introduced for robust foreground colour estimation.

3.3.1 Robust foreground colour estimation

The normalised sum of square difference can be written as

δi =
1

npu f
dpu f (ψp,θi) . (5)

To precisely estimate the foreground colour for the pixel p, the set of NSSD values δ , is
sorted such that δ j < δ j+1. We only consider the centre pixel colour of the N most similar
patches, written as τ = {θ c

1 ,θ c
2 , ..,θ c

N}. To remove the effect of noise, the foreground colour
f̃ for the pixel p is estimated as the median of τ that is, f̃ = µ1/2 (τ). The value of N depends
on the noise level in the sequence, in this paper we have used N = 3. The process is iterated
until the foreground colour is approximated for all the unknown pixels.
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Original Trimap Hillman Poisson Closed-form Robust Non-para 1 Non-para 2 Trimap for
Non-para 2

Figure 4: Distinct images 30 frame apart in two different natural video sequences along with their
alpha mattes generated by different techniques. The sequence are taken from [5].

3.4 Alpha matte estimation
The final alpha matte is generated by estimating the alpha value for all the pixel in the
unknown region of the trimap. The α value for pixel p in the unknown region is computed
by rearranging the compositing equation (1) as

αp =
cp− b̃p

f̃p− b̃p
. (6)

Where, cp and f̃p are the composite and approximated foreground colour respectively while
b̃p is the estimated background colour from the background plate extracted in the section
3.1. Once an alpha matte is computed, the foreground object can be seamlessly composited
onto a new background.

4 Results and evaluation
We present a detailed comparison of the proposed technique with other established matting
algorithms. We have used two natural video sequences used in previous matting papers
[5, 16] for the qualitative comparison while three composite sequences for quantitative eval-
uation. The composite videos are captured in a studio environment with a uniform blue
background in order to provide precise ground truth. The ground truth alpha mattes are gen-
erated by applying Closed form [10] matting algorithm to user defined precise trimaps. The
ground truths are used to form composite video sequences according to equation (1). For the
sake of fair comparison we have utilised an approach similar to [5] to generate trimaps for
the entire sequence by providing key frame after every 10 frames in the presented videos.
We have used Hillman [9], Poisson [15], Closed-form [10] and Robust matting [17] algo-
rithms for comparison. Our matting technique is applied in two different ways for analysis:
(1) using the trimaps generated for other approaches as explained above, refered to as Non-
para 1 and (2) implementation of our complete algorithm including the trimaps refered to as
Non-para 2.
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Composite Hillman Poisson Closed-form Robust Non-para 1 Non-para 2 Ground truth
Figure 5: Frames from two of the three different composite video sequences along with their alpha
matte generated by different techniques and ground truths.

4.1 Qualitative evaluation

Fig 4 shows images from two different natural video sequences and their alpha mattes com-
puted by different techniques. For the first sequence all the techniques except Poisson pro-
duced acceptable results mainly because of the simple background and distinct foreground
colour distribution. The global optimization of Poisson matting generated the segmentation
in the blended region. Hillman et al.’s approach produced unacceptable blurred matte for
the second video sequence due to the presence of large unknown regions and local fore-
ground and background distribution overlap in colour space. Our technique along with the
Closed-form and Robust matting algorithms, generated mattes which are visibly smooth and
perceptually indistinguishable, with a reduced interactive requirement in the case of Non-
para 2.

Office Dance Walk Av. rank

Hillman 59.816 : 05.395 49.185 : 09.591 39.535 : 13.672 5.33 : 2.66
Poisson 53.355 : 07.336 97.606 : 17.136 79.576 : 22.396 5.66 : 6.00
Clo-fo 08.603 : 04.804 30.613 : 13.325 20.733 : 14.363 3.00 : 4.00
Robust 09.884 : 02.861 38.194 : 12.133 28.554 : 15.094 4.00 : 2.66
N-para-1 03.621 : 03.982 28.351 : 11.032 18.722 : 13.231 1.33 : 1.66
N-para-2 03.892 : 04.563 29.202 : 12.374 18.531 : 16.655 1.66 : 4.00

Fra. Key oth. Key NP2.
Natu-1 145 15 4
Natu-2 91 10 3
Office 125 13 6
Dance 125 13 8
Walk 101 11 4

Accuracy and robustness table in the format Number of key frames used
RMSErank

min : ∆RMSErank

(a) (b)

Table 1: (a) Accuracy and robustness rank table, (b) number of key frames used in implementation of
other techniques and Non-para 2.
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(a) (b)

Walk Dance Office
(c) Accuracy and robustness rank plot, smaller values represent better performance.

Figure 6: Techniques are refered to by their initials. Alpha is scaled to [0−255] for RMSE.

4.2 Quantitative evaluation

For the quantitative comparison we have used three composite video sequences as can be
seen in Fig 5, having length between 100 and 125 frames as shown in table 1(b), generated
as explained in section 4. We have used two error measurements: (1) Root mean square
error, RMSE and (2) the percentage of pixels misclassified either as foreground or back-
ground. Fig 6(a,b) shows the RMSE and the percentage of misclassified pixels for the three
sequences produced by different techniques respectively. The RMSE is also used to evaluate
the accuracy and the robustness of the techniques. The minimum RMSE, RMSEmin, in a
given sequence represents its accuracy while the difference ∆RMSE = RMSEmax−RMSEmin
represents the robustness of an algorithm. Table 1 shows the accuracy and robustness rank of
different techniques and the number of key frames used in the complete implementation of
our algorithm and other techniques. Although it is difficult to visually distinguish, the result
of Closed-form, Robust and Non-parametric algorithms, the charts show that our approach
has produced results that have lower error. In the sequence where the foreground motion is
large, it is not surprising that Non− para1 produced slightly better results, than Non− para2,
because of the higher number of key frames available. An advantage of Non− para2 com-
pared to Non− para1 is that it defines key frame adaptively. This considerably reduces the
number of required key frames compared to techniques using regularly sampled key frames,
as can be seen in table 1(b), while producing results which are qualitatively and quantitatively
similar. The rank plots for the used sequences are shown in the Fig 6(c). Our algorithm man-
ages to produce results which are perceptually similar to the ground truth and quantitatively
more precise than other state-of-the-art techniques.
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5 Conclusion
A novel patch based non-parametric video matting technique is presented. We have used
optical flow in a conservative manner to construct the background and to propagate the
trimap. Sampling local patches rather than fitting statistical models, to the defined image
regions, helps our technique to preserve the spatial information of the natural scenes not
only in colour but also in image structure and texture space. The patch based approach di-
minishes the requirement for local smoothness and correlation assumptions made by other
state-of-the-art matting techniques. A detailed evaluation shows that our approach has a
clear advantage over parametric techniques both in terms of foreground, background colour
estimation and user interaction required even for a large foreground motion. Affinity based
techniques tend to produce comparable results but they suffer from accumulation of error as
they estimate alpha values in a propagation manner. Future work in non-parametric matting
will focus on developing a more robust matching criteria to deal with the moving background
objects. Smoothness constrains will also be incorporated to further optimize the perceptual
quality of the alpha matte.
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