Non-Parametric patch based video matting
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In computer vision, matting is the process of extracting foreground objects
while preserving their pixel-wise coverage in the scene. This coverage is
referred to as opacity or alpha matte. Once an accurate alpha matte is
estimated, a foreground object can be seamlessly composited onto a new
background. In this paper we present a novel patch based non-parametric
approach for video matting. The technique provides a strong mechanism
to represent local image features, colours and textures which attempts to
preserve the spatial information of a natural video sequence. This over-
comes the limitation of parametric algorithms [1, 2, 3, 5, 7, 8] which only
rely on strong colour correlation or affinities between the nearby pixels.
The matting problem was first formulated in [4] as linear interpolation of
distinct foreground and background images to form a composite image as

Cp=0pFp+ (1—0tp) Bp. (1)
This equation is known as the compositing equation where, C,,, F, and
B, are the composite, foreground and background colours for the pixel p
respectively while @, is their blending proportion. Equation (1) is clearly
under-constrained therefore in a studio environment it is constrained by
using a uniform background [6] while in natural images and videos having
arbitrary background, user interaction in the form of a trimap is required
to constrain (1).

Initially we construct a clean background by utilising optical flow or
inpainting approach. In a studio sequences, a background plate is gener-
ally available. Unlike other techniques, our approach constructs a trimap
from the previous frame and the background plate. If it contains error,
the user can interact online to define a new key frame. Initially the user
defines a fine trimap T for the frame /¥. Background subtraction and
template-wise normalised sum of square difference are used to propagate
the trimap value from 7% to T¥+!, A square patch, Yp, of dimensions
n is centred at an unmarked pixel p in the frame I¥*1. A patch set ¢ is
constructed by localizing patches at all the local foreground and unknown
pixels corresponding to p in the frame /¥, The most similar patch, @, is
found by
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where, d (l[/p, q)[) is the sum of square difference between v, and ¢; and
n? is the number of pixels in the patch for normalization. The trimap value

T,‘Y,""1 of the pixel p is assigned as
k : k pk+1
. T, if, d(I5,I;7") <e
ThH = 3)
unknown otherwise

where, Tq" is the trimap value of pixel ¢ in the trimap 7% and ¢ is the pre-
defined distance threshold in RGB space. A final refining step is applied
to fill in the unknown holes.

A similar approach is utilized to estimate the foreground colour for
every unknown pixel. A foreground patch set 6 is constructed in a similar
fashion to the patch set ¢ by localising a patch only at the local known
foreground pixels. The normalised sum of square difference is calculated
between the patch y;, and the set 6. The foreground colour for the pixel
p is estimated as the median of the centre pixel, 6, of the N most similar
patches in the set 0 as
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The o value for pixel p in the unknown region is computed as
—b,
a, = Cp )4 (5)
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Figure 1: Temporally distant frames and their a pha mattes.

where, cp, _fp and b~p are the composite, approximated foreground and
background colour respectively. The process is iterated for all the un-
known pixels to get the final alpha matte.
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Figure 2: The initials H, P, CF, and R refer to techniques [2, 3, 7, 8] respectively
while NP1 and NP2 is our technique with and without predefined key frames.

The average RMS error for different techniques applied on different
video sequences is shown in the Fig 2. Quantitative evaluation shows that
our technique outperforms the current state-of-the-art approaches.
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