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Abstract

Off-line model reconstruction relies on an image collection phase and a slow recon-
struction phase, requiring a long time to verify a model obtained from an image sequence
is acceptable. We propose a new model acquisition system, called ProFORMA, which
generates a 3D model on-line as the input sequence is being collected. As the user rotates
the object in front of a stationary camera, a partial model is reconstructed and displayed
to the user to assist view planning. The model is also used by the system to robustly
track the pose of the object. Models are rapidly produced through a Delaunay tetrahe-
dralisation of points obtained from on-line structure from motion estimation, followed by
a probabilistic tetrahedron carving step to obtain a textured surface mesh of the object.

1 Introduction
3D models have an extensive range of uses in computer vision, but generating these models
can be a difficult and time consuming task. Whilst many automated and semi-automated 3D
reconstruction techniques exist, current methods have a variety of drawbacks meaning that
ultimately many high quality 3D models are still generated using labour intensive methods
or completely by hand. Off-line reconstruction methods [17, 22] have the potential to create

Figure 1: Results from each stage of the reconstruction pipeline. Left to right: (a) Object.
(b) Point cloud. (c) Tetrahedralisation. (d) Surface mesh. (e) Textured model.
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highly detailed and accurate 3D reconstructions, but this high level of detail usually implies
that they are computationally expensive and cannot operate at frame rate. This means that the
reconstruction pipeline must be split into two phases: an image sequence or video collection
phase (fast), and an off-line processing phase (slow), after which the model is obtained. If
at this stage the model is found to be flawed, additional images or an entire video sequence
must be collected and the lengthy reconstruction phase repeated. It may take several itera-
tions and many hours before obtaining an acceptable model. We implement a system which
reconstructs an object on-line, allowing the user to ascertain the quality of the input sequence
during collection and to obtain new views based on the current state of the model.

Object reconstruction systems need to segment the object to be modelled from the back-
ground. The simplest method is to use a black background, although this limits the mod-
elling environment. Another option is colour segmentation, although this requires careful
parameter tuning. Colour segmentation combined with a volumetric graph cut [3] can yield
a segmentation, but is very computationally expensive. A prior model [15] or user input [18]
can also be used to aid segmentation, but these methods are usually too time consuming or
labour intensive for on-line systems. Usually, segmentation is difficult because the object
remains stationary relative to the background while the camera is moved around to take im-
ages. Therefore to make segmentation easier, we opt to keep the camera stationary and to
move the object around instead, allowing segmentation of the object from the background
through use of geometric constraints based on rigid body motion.

A few real-time and on-line reconstruction systems exist. Rusinkiewicz et al. [25] im-
plement a system which uses a projector to project structured light onto a white untextured
object held using a black glove against a black background. The use of a black background,
black glove and projector are undesirable, as well as the system’s inability to model textured
objects. Pollefeys et al. [23] present a plane-sweeping system capable of producing 3D mod-
els of urban environments in real-time, although an array of 4 cameras is required as well
as GPS and INS measurements for pose estimation. Several monocular SLAM [6, 7] based
systems [4, 10] exist which fit planes to sparse point clouds maps in real-time, although only
sparsely and thus do not create fully dense models. Paalanen et al. [20] describe an on-line
SLAM-based system for producing a coloured semi-dense point cloud of a scene, but (pur-
posefully) avoid the issue of simplifying the point cloud into a geometric model. Brown et
al. [2] implement a method of producing edge models of simple edge-based objects through
a series of mouse interactions from a live video feed. VideoTrace [28] is capable of produc-
ing 3D models from videos through user interactions with a mouse. However, the video must
be preprocessed using structure and motion analysis [22] and interactions must be performed
on still frames, constraining the system to off-line operation.

To our knowledge, apart from ProFORMA, no completely automatic system exists which
reconstructs a textured geometric model from an object on-line using only a camera and
commodity hardware.

1.1 Contribution
Our system, ProFORMA, enables textured 3D models to be acquired on-line in just over
a minute, with models being reconstructed fast enough to provide feedback for view plan-
ning. The user is free to interact with the object which is robustly tracked using a method
that makes immediate use of the partial model. The reconstruction environment is not con-
strained to a studio and enables models of textured objects to be acquired using a single
camera and commodity hardware. Rapid reconstruction is enabled by using a novel recur-
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Figure 2: Flowchart of system operation.

sive probabilistic tetrahedron carving algorithm, which uses visibility of observed features
to rapidly obtain a surface model of an object. Parts of an object not yet seen by the system
are indicated to the user who can then manipulate the object in order to provide new views.

2 System Overview
We implement an on-line reconstruction system with a fixed-position video camera. The
user can move a textured object in front of the camera using their hand. This enables the
object to be orientated so that all parts of the object (including the base) can be viewed and
modelled. No assumptions about the object are made and no prior information is known
about the object, although the object must be sufficiently textured. A partial model is built as
the user moves the object around, providing immediate feedback to the user about the state
of the reconstruction.

When tracking the object to be modelled, it is very advantageous to use a video sequence
rather than an image sequence as this takes advantage of small inter-frame motions (at high
frame rates). In terms of reconstruction, however, temporally close and thus spatially close
video frames provide very little 3D information, whilst adding to the reconstruction cost
(dominated by a global bundle adjustment which grows O(n3) with the number of frames
used [8]). Therefore we opt for a two-threaded keyframe based approach, with separate
tracking and reconstruction threads, as used by Klein and Murray [13].

Figure 2 shows the design of the system. The tracking thread takes a video input of the
scene and calculates the pose of the camera relative to the object at frame rate. It also tracks
the location of 2D image features which adhere to rigid body motion constraints (epipolar
constraints). When a large enough rotation is detected, a keyframe is taken and passed to
the reconstruction thread, which generates a partial 3D model of the object. This model
is fed back into the tracker to provide additional structural information that can be used
during tracking. The model is also utilised by the visualisation system to show the user the
state of the reconstruction so far, with the model pose updated to the live pose of the object
obtained from the tracking thread. The user provides feedback to the system by looking at
the visualisation and manipulating the object accordingly to provide new views.

3 Tracking
The tracking thread tracks the 6 DOF pose of the calibrated camera and establishes new
feature tracks for building unmodelled parts of the object. It requires a partial model (mesh
of triangles) from the reconstruction thread, as well as a list of landmarks. Pose tracking is
performed using a similar method to Rosten and Drummond [24] but by using a fused pair
of point trackers instead of a fused point and line tracker. New feature tracks on currently
unmodelled parts of the object are obtained from a 2D tracker using epipolar constraints.
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3.1 Robust Point Tracker

The robust point tracker follows transient features with 3D location from frame to frame. It
operates on frames Hn half-sampled from video frames In. For non-maximally suppressed
FAST features FNM(Hn−1) extracted from the last tracked frame, 3D locations are calculated
by intersecting rays cast from the last camera position with the mesh model. Feature descrip-
tors are 16 pixel rings of intensities. These are matched against nonmax features FNM(Hn)
extracted from the current frame, by SSD matching. The resulting 2D-3D correspondences
are used to estimate an updated camera pose using the PROSAC robust estimation tech-
nique [5] with the three point pose algorithm [9].

3.2 Drift-free Point Tracker

The first point tracker is robust to large motions, but drifts with time as errors accumulate
frame to frame. Therefore, the pose obtained from the first tracker is used as the starting
point for the second point tracker, which is not robust to large motions but does not suffer
from much drift. This tracker works by reprojecting visible landmarks from the model into
the current image, In. Visibilty is determined by intersecting rays from camera to landmark
with triangles in the model. Each landmark Lk is matched to FAST features F(In) extracted
from In which are within a 10 pixel radius of its reprojected position by lowest SSD. De-
scriptors are 5x5 mean and variance normalised image intensity patches, rotation normalised
by aligning the patch in the direction of strongest blurred gradient around the feature. The
descriptor for Lk is chosen to be the landmark’s appearance in the keyframe with closest
camera rotation to the current camera pose, KC(Lk). Married pair matching is performed
such that the feature F(In)i matched to Lk is matched in the reverse direction to features in
KC(Lk) within a 10 pixel radius of the landmark location in KC(Lk). A feature is successfully
matched to a landmark only if the descriptors mutually have the lowest SSD when matching
in both directions, and are below a threshold value. Due to the model being incomplete, visi-
bility information may be incorrect (e.g. initially in concavities), so landmarks in the closest
3 keyframes are also reprojected into the current image.

Once the matches are obtained, a robust M-estimator with Tukey influence function [27]
is used to minimise reprojection error of landmarks by optimising camera pose. Camera
pose is parameterised as a member of the Lie group, SE(3) [29], the group of rigid body
transformations in R3. The derivative of reprojection error with respect to camera pose, the
Jacobian, is calculated by considering the tangent space of SE(3), the 6 dimensional Lie
algebra se(3). Using the pose estimate from the first tracking stage as a starting point and
iterating allows an accurate and robust pose estimate to be obtained. Combining the two
stages of tracking together in the manner described enables the system to track the object
over large motions without succumbing to the effects of drift.

3.3 2D Tracker

As well as tracking the pose of the camera and position of 3D landmarks, the tracking thread
is also required to detect and track new features on the object for reconstruction. This is
achieved by tracking features which adhere to the epipolar geometry between the current
camera pose and the pose of the last keyframe. The essential matrix, E, is calculated from
the relative poses of the cameras [11].
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Non-maximally suppressed FAST features from the last keyframe, FNM(K j), which do
not correspond to an existing landmark, are matched to FAST features in the current frame,
F(In). Matching is constrained to within a 10 pixel radius of the last seen location and is per-
formed in the same manner as in Section 3.2, with descriptors again being 5x5 rotation, mean
and variance normalised patches. If a feature F(In)i is a match to FNM(K j)k, and F(In)i lies
within a threshold distance from the epipolar line cast by FNM(K j)k, the match is accepted
as an epipolar match and the last seen location of FNM(K j)k is updated to the location of
F(In)i. The descriptor of FNM(K j)k is not updated each frame order to eliminate drift. This
means that changes in appearance of a feature due to pose changes are unaccounted for, but
as keyframes are taken regularly, this does not have much of an effect on tracking. If a fea-
ture FNM(K j)k has not been an epipolar match in any of the last 5 frames, it is regarded as
not adhering to the rigid body motion of the object (or has been occluded) and is no longer
tracked by the 2D tracker.

3.4 Keyframe Addition
When the pose has changed by a small rotation (∼ 10◦) since the last keyframe, the current
video frame is taken as a new keyframe. Existing landmarks visible in the keyframe are
augmented with a new location and appearance (descriptor). Feature tracks obtained from
the 2D feature tracker are added as new landmarks, with an estimated 3D position provided
by triangulating the rays from cameras to feature coordinates. The tracking thread then
creates a new reconstruction thread to reconstruct the model in the background.

3.5 Tracker initialisation
When the system first starts, no structural information about the object to be modelled is
known. A fixation constraint is imposed; it is assumed that at least part of the object is
within the central area of the image when reconstruction starts. A keyframe is taken when
the system starts. The 2D tracker (Section 3.3) is used as the sole tracker as no partial 3D
model or landmarks are available at this stage. PROSAC is used in conjunction with essential
matrix estimation from 5 points [19] to find the essential matrix between the current video
frame and the previous keyframe. Hypotheses for the five point pose algorithm are drawn
from matches near the centre of the image due to the fixation constraint. Once the essential
matrix is obtained, the 2D tracker works in the same way as in Section 3.3. The essential
matrix is decomposed [12] to find the camera pose (rotation and translation up to scale).
Translation scales of transformations between initial keyframes are normalised by setting the
translation scale between the first two keyframes to 1 and ensuring that landmarks visible in
multiple keyframes have (approximately) the same 3D location.

4 Reconstruction
The reconstruction thread creates a rendered 3D model from a list of landmarks, keyframes
and keyframe camera poses received from the tracking thread. Results from each stage of
reconstruction can be seen in Figure 1. First, a point cloud is created by refining camera and
landmark positions using bundle adjustment. This is is then converted into a mesh through
a Delaunay tetrahedralisation. Tetrahedra are carved away based on visibility to obtain a
surface mesh, which is then textured mapped to create the 3D model.
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Figure 3: Left to right: (a) Simple carving. (b) Probabilistic carving. (c) Church roof after
simple carving. (d) Church roof after probabilistic carving.

4.1 Bundle Adjustment

Bundle adjustment is the minimisation of reprojection error by simultaneously optimising
over all 3D point locations and camera poses. Global bundle adjustment is usually too ex-
pensive to perform for on-line reconstruction, but using a two threaded approach means that
tracking can continue whilst bundle adjustment runs in the background. As we are mod-
elling a single object, the number of keyframes remains relatively small. We use an efficient
implementation of bundle adjustment which performs a sparse factorisation of the bundle
Hessian [26] and is able to bundle adjust 7776 observations of 2127 landmarks over 30
keyframes in 1.07 seconds (single core of a 2.4GHz Intel dual core CPU). This means that
results from this stage, a 3D point cloud and list of keyframe camera positions, become avail-
able in a timely manner for both the next stage of reconstruction and hence for tracking. A
point cloud produced by the system can be seen in Figure 1(b). Landmarks which have a
reprojection error of more than 1 pixel are rejected at this stage.

4.2 Surface Recovery

A point cloud in itself is not a good enough representation of an object, so processing is
required to retrieve the model surface. There are many methods of achieving this, of which
two effective ones are volumetric graph cuts [14] and space carving [16]. These methods
are, however, too costly for on-line reconstruction, taking tens of minutes or even hours to
complete. Space carving also requires detection of the object’s silhouette, which in this case
is corrupted the the user’s hand. Therefore, a different approach is taken which allows the
mesh of the object to be recovered using an efficient algorithm that is also robust to partial
occlusion from the user’s hand. A variation to basic space carving is used; the space is first
partitioned into non-regular voxels, which are then carved based on visibility of landmarks.
Labatut et al. [17] also use a Delauanay tetrahedralisation and landmark visibility informa-
tion, but as part an off-line reconstruction process involving a computationally expensive
graph cut.

4.2.1 Delaunay Tetrahedralisation

Space partitioning is performed through a Delaunay tetrahedralisation using CGAL [1]. A
Delaunay tetrahedralisation is the extension of a 2D Delaunay triangulation to 3D. The con-
vex hull of the point cloud is partitioned into tetrahedra with the condition that the circum-
sphere of each tetrahedron contains no vertices of any other tetrahedra. Figure 1(c) shows
the Delaunay tetrahedralisation of the Church point cloud. The model at this stage is a par-
titioned convex hull, so tetrahedra must be carved away to obtain the true surface.
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4.2.2 Carving

One fast and efficient method of removing tetrahedra is by looking at visibility of landmarks.
Each triangular face of a tetrahedron is tested in turn against all rays from landmarks to
cameras in which they were visible as shown in Figure 3(a). Tetrahedra with one or more
faces which intersect with rays are removed. Let Ti represent a triangle in the model, j
the keyframe number, k the landmark number and R j,k the ray from the camera centre at
keyframe j to landmark k. Let υ represent the set of all rays with indice pairs ( j,k) for
which landmark k is visible in keyframe j. For each triangle in the model, the probability
that it exists given the set of visible rays can be expressed as:

Pexist(Ti|υ) = ∏
υ

Pexist(Ti|R j,k) = ∏
υ

(
1− Intersect(Ti,R j,k)

)
(1)

Intersect(Ti,R j,k) =
{

1 if R j,k intersects Ti
0 otherwise (2)

In this formulation, Pexist(Ti|υ) takes the value of 0 if any rays intersect the triangle and 1 if
no rays intersect the triangle. This yields a very noisy model surface as points slightly below
a true surface due to noise cause the true surface to be carved away (Figure 3(c)). Therefore,
we design a probabilistic carving algorithm which takes surface noise into account, yielding
a far smoother model surface (Figure 3(b) and (d)). Landmarks are taken as observations of
a surface triangle corrupted by Gaussian noise along the ray R j,k, centered at the surface of
triangle Ti with variance σ2. Let x = 0 be defined at the intersection of R j,k and Ti, and let x
be the signed distance along R j,k, positive towards the camera. Let lk be the signed distance
from x = 0 to landmark Lk. The null hypothesis is that Ti is a real surface in the model and
thus observations exhibit Gaussian noise around this surface. The hypothesis is tested by
considering the probability of generating an observation at least as extreme as lk:

P(Lk|R j,k,Ti) =
∫ lk

−∞

1
σ
√

2π
exp
(
−x2

2σ2

)
dx (3)

This leads to a probabilistic reformulation of simple carving:

Pexist(Ti|υ) = ∏
υ

Pexist(Ti|R j,k) (4)

Pexist(Ti|R j,k) =
{

P(Lk|R j,k,Ti) if R j,k intersects Ti
1 otherwise (5)

If Pexist(Ti|υ) > 0.1, the null hypothesis that Ti exists is accepted, otherwise it is rejected and
the tetrahedron containing Ti is marked for removal.

It is unnecessary to use all visible rays in the probability expression for each triangle,
as rays which do not intersect the triangle do not impact the score whilst adding to the
computational cost. To obtain a subset of rays which might intersect the triangle, range
trees are formed for each keyframe’s visible landmarks (in 2D screen coordinates). Each
triangle of each tetrahedron is projected onto a keyframe. The keyframe’s range tree is then
used to find all features (and corresponding rays) which lie within the bounding box of the
projected triangle, and only these rays are used in the probability expression (as the others
are guaranteed not to intersect the triangle). It can be further noted that each tetrahedron
shares faces with other tetrahedra, and that adjacent faces only need to be tested once due to
having the same probability score.
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If a tetrahedron with four neighbours is carved away whilst none of its neighbours are,
it makes no difference to the surface model as the hole left by the tetrahedron is occluded
by its neighbours. Similarly, tetrahedra on the surface of an object can be seen as a barrier,
shielding tetrahedra beneath it from influencing the surface model. Starting with the parti-
tioned convex hull, we can postulate that its surface tetrahedra form the carved surface of the
model. If this is true, trying to carve tetrahedra on the surface will not remove any tetrahedra,
but if this is false, tetrahedra will be carved away and the surface altered. If the process is
repeated for the new surface until convergence (i.e. no more tetrahedra are removed), the
surface is now visually identical to the carved surface obtained by testing all rays against
all tetrahedra. This is due to the effects of now removing any non-surface tetrahedron being
occluded by the surface tetrahedra. In its current form, the process is slow due to needing to
compute which tetrahedra lie on the surface after each iteration. It can be noted, however,
that removing a single surface tetrahedron simply adds its neighbours to the set of surface
tetrahedra whilst removing itself. Therefore, a very efficient recursive carving algorithm can
be designed. A carving function takes a (surface) tetrahedron as input, which is tested for
removal. If is it is removed, then the function calls itself on the neighbours of the tetrahe-
dron. If it is not removed, then it is known to lie on the true carved surface and the function
terminates. If the function is called on all surface tetrahedra of the convex hull, then the true
carved surface can be obtained. Testing is done efficiently by ensuring that no tetrahedron is
ever tested twice and that only one score is calculated per pair of adjacent faces. The recur-
sive algorithm yields significant speed-ups over the naïve approach of testing all tetrahedra
due to only needing to test a small proportion of tetrahedra in the partitioned convex hull.
Table 1 in Section 6 presents an evaluation of the performance improvement thus obtained.

5 Visual Feedback and User Interaction
After carving the tetrahedra based on visibility, texture is rendered onto all triangles on the
surface mesh. Texture for each triangle is chosen from the keyframe with the most vertices
of the triangle visible. If this is tied between several keyframes, the keyframe with the
most normal view of the surface is chosen. The rendered model is displayed to the user
and orientated to the live pose obtained from the tracker, although the view can also be
manipulated using the mouse. Surfaces not yet visible from any keyframe (surface normal
points away from all cameras) are coloured in black and yellow stripes to indicate this fact
to the user (Figure 4).

6 Results and Discussion
The reconstruction system was implemented on a machine with an Intel 2.4GHz dual core
CPU and Logitech Quickcam Pro 9000 (640× 480 @ 15fps). Models are displayed using
Geomview [21]. Videos showing real-time footage of the system during reconstruction can
be found at http://mi.eng.cam.ac.uk/~qp202.

Figure 4 show models in various poses compared to a real image of the object. Table 1
shows that models are produced very quickly using ProFORMA, taking under 3s to generate
a complete model after the last keyframe is added. Using ProFORMA to acquire complete
textured models of the box and church objects took 61s and 75s respectively, including video
collection time. Measurements on the Box model showed that when planes were fitted (by
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Figure 4: Objects and reconstructed models. Clockwise from top left: (a) Box. (b) Lilt Can.
(c) Church. (d) Jewellery Box.

least squares) to the surface model, angles between pairs of faces deviated by less than 1◦

compared to measurements from the object. When calculating the distances between op-
posing fitted planes from the midpoint of faces, it was found that the ratio of distances was
1:1.03:1.72. Measurements obtained from the real object were 52x53x90mm, corresponding
to a ratio of 1:1.02:1.73, i.e. a deviation of less than 1mm at object scale. Table 1 shows
that the recursive carving algorithm yielded a significant speed-up compared to the naïve
algorithm of testing all tetrahedra, taking 1

7 th of the time for the convex Box and 2
7 th for

the Church, which contained significant concavities. These results show that even though
models are generated rapidly by ProFORMA, they are still of a high quality and bear great
resemblance to the real objects.

Table 1: Statistics for Box and Church models using different carving algorithms.
Box (26 keyframes, 61s) Church (34 keyframes, 75s)

Carving algorithm Test All Recursive Test All Recursive
Total Tetrahedra 11298 11298 8728 8728
Tetrahedra in model 10796 10796 7834 7834
Tetrahedra tested 100% 7.8% 100% 18.9%
Carving Time/s 5.01 0.71 4.33 1.25
Total Reconstruction Time/s 6.93 2.63 5.95 2.87
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7 Conclusion and Future Work
The tight feedback loop of model reconstruction and model-based tracking provides a ro-
bust and accurate estimate of camera pose for the system. Coupled with the rapid recursive
probabilistic carving algorithm, ProFORMA can be used to acquire fully textured geometric
models in just over a minute. The partial models provide excellent guidance for the user in
planning further views, as well as making tracking robust to large motions and occlusion.

There are many avenues of further investigation for ProFORMA. Currently, a few incor-
rect tetrahedra may remain if there is little texture in a concavity (e.g. RHS of Church in
Figure 4), but integrating edges into tracking and texture into carving may enable these con-
cavities to be better modelled. It would be interesting to process image sequences obtained
from ProFORMA using an off-line reconstruction algorithm to obtain higher quality models,
and to validate that good models from ProFORMA correlate to good models from off-line
reconstruction. Another area of interest would be user guided modelling, where the system
guides the user to novel views or revisits views of possibly erroneous parts of the model.
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