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Abstract

We consider the colorization problem of grayscale images when some pixels, called
scribbles, with initial colors are given. In this paper, we propose a new multi-layer graph
model and an energy formulation that can incorporate higher-order cues for reliable col-
orization of natural images. In contrast to most existing energy functions with unary
and pairwise constraints, we address the problem of imposing a high-order constraint
whereby pixels constituting each region tend to have similar colors to the representa-
tive color of the region they belong to. The representative colors of the regions that
are generated by unsupervised image segmentation algorithms, act as higher-order cues,
and they are automatically obtained by a nonparametric learning technique that estimates
them from the resulting pixel colors in a recursive fashion. We formulate this problem
in terms of two quadratic energy functions of pixel and region colors, that are supple-
mentary to each other, in our proposed multi-layer graph model and estimate them by
a simple optimization technique that minimizes both functions simultaneously. Since
our higher-order constraint enforces the color consistency among regions, we can eas-
ily obtain good colorization results with less dependence on the size and position of
each user-given scribble. Experiments on several natural images demonstrate that our
colorization method achieves much high-quality results compared with the conventional
state-of-the-art methods.

1 Introduction

Colorization problem is to add colors to a grayscale image in which some pixels, called
scribbles, with initial user-defined colors are given. There are two important difficulties for
reliable colorizations in natural images. The first problem is how to correctly identify fuzzy
or complex region boundaries with robust color distinction. The second one is how to easily
add a user’s scribbles. The main reason for why these problems are difficult to solve is that
general colorizations tend to be largely dependent on the scribble properties: size and posi-
tion. In accordance with these scribble properties, the resulted image can look oversmoothed
and suffer from color artifacts visible especially near edges. In this case, the user is often
left with the task of manually drawing the additional scribbles for delineating complicated
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Figure 1: Introducing our colorization framework. (a) Grayscale image with color scribbles.
(b) Regions generated by an unsupervised image segmentation algorithm [ 3]. (Red curves
represent the boundaries of the regions.) (c) Conventional colorization result by Levin et al.
[10]. (d) Our higher-order colorization result by using regions in (b).

boundaries between a subject and the background. It is an expensive and time-consuming
process. Therefore we need an efficient system which produces reasonable colorizations by
using less human effort.

Recently, several colorization approaches [ 7][8]1[14][10][2][13][4] have been proposed.
The work of Yatziv et al. [14] is based on the concept of the weighted color blending. This
blending is derived from a weighted distance function computed from the intensity channel.
By using the basic concept of the shortest distance as the blending weight, it offers a fast
colorization technique. However, it did not consider the global color-continuity relationship
between neighboring pixels. The method by Levin et al. [10] colorizes an image by mini-
mizing a quadratic energy function derived from the color differences between a pixel and
the weighted average of its neighborhood colors. However, enough scribbles that are tightly
positioned along the object boundaries must be given for producing high-quality color im-
ages, especially for thin elongated objects. For solving this difficulty, it is helpful to use
the region information obtained by over-segmentations. Previous region-based colorization
methods [2][13][4] are inspired by the hard constraint whereby pixels constituting a particu-
lar region should have similar colors. If, however, the initial regions are not consistent with
boundaries in the image, there are radical difficulties in obtaining exact solutions. In fact,
such situations often arise in natural images.

Our technique automatically propagates the scribble colors to the remaining pixels by the
grayscale intensity difference, as in [10]. However, unlike [10], for the color estimation of
each pixel, our method additionally utilizes the representative colors of the over-segmented
regions as higher-order cues in terms of a soft color consistency constraint whereby the pixels
in each region tend to have similar colors to the representative color of the region they belong
to. The region-based higher-order cues have been proposed for other tasks in computer vi-
sion such as labeling problems [6][12][9]. Especially, Kohli et al. [9] first learn higher-order
cues as parametric models, and then new higher-order potentials in an energy function are
designed based on them for the label estimation. In our work, we simultaneously estimate
the region colors, namely higher-order cues, and the final pixel colors. Instead of parametric
models, we address a nonparametric learning technique to recursively estimate the higher-
order cues from the resulting pixel colors included in each region. By incorporating these
higher-order cues into a quadratic energy function for partly enforcing the color consistency
among regions, the final color image is also recursively produced. Therefore we design two
quadratic energy functions of pixel and region colors that are supplementary to each other,
and estimate them by a simple optimization technique that minimizes both functions simul-
taneously. Our colorization method has various advantages over conventional approaches



KIM et al.: INCORPORATING HIGHER-ORDER CUES IN IMAGE COLORIZATION 3

[14][10] as follows. First, it is less dependent on the size and position of each scribble. Even
with a few scribbles that are roughly positioned, we can achieve good colorization results
with clear object boundaries. For example, the gray-scale image that contains thin elongated
objects is much better colorized with detailed boundaries than the conventional state-of-the-
art method as shown in Fig. 1. This advantage can be attributed to the enforcement of the
soft color consistency among regions. Second, the initial regions guide the suitable positions
of the scribbles for a user. Therefore, the user can expect reasonable colorization accord-
ing to the user-inputs. Finally, we can encode the long-range connections between regions
that facilitate propagation of colors across larger image regions via a region-based quadratic
energy function.

The paper is organized as follows. In Section 2, we introduce our proposed framework
for colorization and explain in detail how to design the quadratic energy functions based on
higher-order cues in a proposed graph model. The experimental results of our method are
given in Section 3. Finally, we discuss our approach and give conclusions in Section 4.

2 Proposed Algorithm

Given a grayscale image | with scribbles S with the desired colors, the colorization is to
find the colors of all pixels X = {Xn}n—1,.x|- We work in the YUV color space where
Y = {Yn}n=1,...|x| is the monochromatic luminance channel, which we will refer to simply
as intensity, while U = {un}n_1_ x| @nd V = {Vn}n_1 . x| are the chrominance channels,
encoding the color. Our goal is to complete both the U and V channels, given Y = I. We deal
with the only U channel in this paper, since the V channel can be treated in the same manner.

Our colorization is based on the propagation of the scribble colors by the intensity dif-
ferences. Unlike previous work [10] that generally consider only pairwise constraints that
two neighboring pixels should have similar colors if their intensities are similar, we propose
to impose a high-order constraint whereby pixels constituting each region tend to have sim-
ilar colors to the representative color of the region they belong to. Our proposed algorithm
works as follows. We first design a new multi-layer graph model with two different node
types: pixels and regions in the image. We then formulate two quadratic energy functions
for estimating the pixel and region colors, that are supplementary to each other, in this graph,
and simultaneously optimize them in a simple way.

2.1 Graphical Model

Let us construct an undirected graph G = (Q, E) where the nodes Q = {X,R} consist of two
types: pixels X and regions R, generated by an unsupervised segmentation algorithm such
as Mean Shift [3], and the edges E are the links between two nodes as shown in Fig. 2. Ina
subset X of X, each node x, € X* represents the pixel with user-given color u;; e U*. Ina
similar way, we select a subset R™ of R, where each node ri € R" is a region containing at
least one pre-defined pixel (3xn € X among x, € ri), and it has the initial color G, e U™,
defined as the mean color of inner pre-defined pixels. We will refer to these subsets X *+ and
R* simply as seeds. Each pixel x, € X initially has an intensity y, € Y. For each region
rg € R we can generate its properties yx as the mean intensity of the inner pixels x, € r:
Yk = m Yxner, Yn: Where |ry| is the number of the pixels inside the region ry.

In this graph G, the pairwise edges E = {E* ,E® E"} are determined by the neighbor-
hood system. The weights W = {W* W& W} are assigned to E and classified by different
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Figure 2: lllustration of a proposed graph. A node Q = {X, R} denotes a pixel x,, € X (green
circle) or a region ry € R (violet circle). The boundaries of the regions R, generated by over-
segmentation [3], are drawn in red color overlaid on the image in (a). (b) shows an example
of the edges between a region and its corresponding pixels with violet lines.

criteria according to the types of the two connected nodes. First, an edge ex,,, € E* between
two neighboring pixels x, and xm has a weight wim € WX as a typical Gaussian weighting

function given by )
~ (Yn—ym)
waﬁ{ﬁxp( =) et )

otherwise,

where X, represents the local neighborhood pixels of x, and ox is the variance of the total
pixel intensities. This weight w¥,, provides us with a numerical measure for the intensity
similarity between two nodes x, and xm. And, for an edge e}, € EX between two adjacent
regions rc and r, a weight w, € WX is similarly defined:

(=) R
wy={ o0 (-75) e @
0 otherwise,

where X\ represents the adjacent neighborhood regions of r and or is the variance of the
total region intensities. Finally, the edges E¥ between pixels X and regions Rare added using
the fact that each pixel corresponds to only one region such as in Fig. 2(b). Therefore, an
edge €, € E™ between a pixel x, and a region ry has a weight w¥, € W as follows:

|1 Xperg
er{‘k_{ 0 otherwise. ®)

By these connections, each region can get the supplementary information of the pixel colors.
Simultaneously, it is possible to transfer the information of the region colors into the pixel
one. Since each region color is estimated based on the colors of its inner pixels as well as its
neighboring regions, it is called "higher-order cue”.
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2.2 Higher-Order Energy Model

The concept of our proposed framework is to estimate the pixel colors U = {uUn}n_1 x|
by defining the resulted region colors U = {Uk}k—1,..|r @s the higher-order cues. By the
definition of the relationship between all nodes Q = {X,R} in the graph G, we propose a
quadratic energy function J* of pixel colors U as follows.

¥ = gp))(alrv\/lse + léﬁ%ary + Téar)égion

~ 2 ——— —
= 3 WpUn—um)®+24 I (Uh—uf)’+T 3 (Un— T WG,
XnmEX XnEXt Xn€X reeR

where W&, = ﬁ in (1) and Wit = Z‘R\‘Ni{l\(’\ﬁk/ in (3) are defined as the normalized weights.
Two parameter; A arr]lnd T emphasize the energyn term &% unary and &; reg,on, respectively, and they
are initially fixed for our all experiments.

The common energy model [10] used for colorization is characterized by the energy
function only defined in unary &, and pairwise é’"‘;‘a"me terms. Note that in this work,
we propose to use the additional higher-order term &% ., defined by the color differences
between pixels and regions.
Pairwise Term. The first term é”xajrw,se of the right-hand side in (4) is the color-continuity
constraint that two neighboring plxels in the small neighborhood system, which is usually
chosen to be either 4 or 8 neighborhoods, should have similar colors if their intensities are
similar. This pairwise term is closely related to the algorithms proposed for other tasks in
image processing such as image segmentation algorithms [1][5]. In this work, we use the
normalized weight function W, that sums to one. It becomes large when an intensity yp is
similar to ym, and small when the two intensities are different, as in [10].

Unary Term. The second term éij;ary in (4) is the unary constraint that each seed should
maintain the user-given color. For the larger A, each seed x, € X™ gets more similar color to
the user-given one u € U™. Therefore A represents the authenticity of the user-inputs.
Higher-Order Term. Finally, the third term (fr}ég,on in (4) is the higher-order color consis-
tency constraint whereby a pixel color should be similar to its corresponding region color.
Unlike the hard color consistency constraints that were used in other conventional region-
based methods, our soft constraint allows the pixels in a common region to have quite differ-
ent colors. Since a region often contains multiple seed pixels with different colors, the color
consistency between its inner pixels is partly enforced with a weight 7. Also, when some re-
gions have the inconsistent boundaries under high-clutter scenes, this soft constraint is truly
useful. This higher-order term &g, is designed based on the region colors U, estimated by
nonparametric learning from the given image itself.

region

2.3 Learning Region Colors

To solve the formulation (4), we need to estimate the region colors U by referring the pixel
colors U in the graph G. In a similar way to J* in (4), the energy model J® for the region
colors U is formulated as follows.

F o= ggairwise+kglﬁlary+gg ixel
—\2 — —1\2 — ~oy 2 (5)
= X Wy(—u)"+24 ¥ (—Uu)"+e X (k— X Wriun),

el €R reeR* reeR XnEX
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where Wiy = % in (2) and Wi, = ‘X‘L in (3) are the normalized weights. Two
Ty Wge _1 Wik

parameters A and € emphasize the energy term ER unary and &,
fixed for our all experiments.

The first term @””‘Rajrw,se of the right-hand side in (5) is the pairwise constraint that both
adjacent regions should have similar colors if their mean intensities are similar, similarly to
é";‘airwise in (4). Namely, each region color Uy depends on the basic constraint that a good
color image should not change too much between nearby regions. The second term é”‘j}]ary
in (5) is the unary constraint that each seed region ry € R™ should have the mean color
U, € U™ of the inner seed pixels, similarly to &, in (4). Finally, the third term &5, in
(5) is another estimated unary constraint whereby a region color Uy should be similar to the
mean of inner pixel colors up of X, € ry. This term has the effect of refining the region colors

from more informative pixel colors, when there is less color information from user-inputs.

p|><e|7 respectively, and they are

2.4 Optimization Formulation

Since two energy functions J¥ and J® in (4) and (5) are related to each other, we should
minimize them simultaneously. First, these energy functions can be reformulated in matrix
forms with two vectors U = [Un]|x|x1 and U = [Ui]jrx1 as follows.

o= U (- WE)d+ (T o) TAX (T ) + 70— W) T (U - W)

(6)

B AT (= WR)T (T T)TARE - T) + (0 - W) T (@ - WRa),

where W = W] x|, WER = [WEE] x| jRjy WE = Wiy R R » and WRE = W]y x| are
the row-normalized matrices with weights in (4) and (5). The matrix A* = diag([«7, ..., K‘?;(‘])
(or A® = diag([«x7, ..., Kﬁql])) is a diagonal form with k% = A (or k¢ = 1) if a seed x, € X*
(or re € R*) and 0 otherwise. The vector 0" = [uj]x|x1 (or U = [Ug]|ryx1) is an initial color
vector with uj; = u (or U = Uy)) if Xy € X (or r € R™) and 0 otherwise.

Since these two quadratic functions are convex, they can be solved jointly in a simple
way. Differentiating their matrix formulations J* and J® in (6) with respect to U and U,
respectively, and set to zero, we can get all colors T and U simply by

B = U WU+ AX(— ) + (- W*Rh) = 0

QI s A "
— 0 R7 R(M e 0 RX —

= = U-WFRU+ARU-U")+e(U-W¥0) = 0,

which can be jointly transformed into

2)-v-on[2] ol 2]

AX Lo~ N
T 0T AT WX (1—7)WXR .
where Q = | (1FI+AY . and 1 = { R o (t=-L
A _ RX R 1+
TTOTAR (1-e)W eW T
and & = 1 +£) are the diagonal and row-normalized matrices, respectively. Since the matrix

(B =1— (I —Q)I) is nonsingular [11], the matrix B is invertible. Therefore we easily
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Figure 3: Overview of our proposed colorization algorithm. (a) Input image I. (b) Color
scribbles S. (c) Regions: R, generated by Mean Shift [3]. (d) Our region-based colorization
from region colors G in (9). (e) Our final colorization from pixel colors T in (9).

compute the equation (8) by a matrix inversion technique, and finally have the colors U and
U of all pixels X and regions R for the colorization problem as follows:

[E‘}:u_(l—g)n)—lg[?"} :B—lg{f] ©)
u u* T

Since the edges E* between two neighboring pixels are connected in a small neighborhood
system, B in (9) is very large sparse ((|X| +|R]) x (|X|+ |R|)) matrix (|R| < |X|). Therefore
its inversion typically has an efficient computation. The inversion method implemented by
MATLAB division operator “\” (which we used in our experiments) is very efficient in find-
ing the inversion of large sparse matrix. In case of the 364 x 273 image | in Fig. 3(a), B is
on about 0.00004% full. It takes about 4.7 seconds to produce our colorization result in Fig.
3(e) by MATLAB 7.6 on a quad-core 2.4GHz desktop PC.

2.5 Overview of Our Colorization

Fig. 3 shows the overall process of our algorithm from the color scribbles to the estimation
of the region colors, that are used as higher-order cues, and the resulting colorization. Our
method starts with color scribbles Sas shown in Fig. 3(b). After generating the regions Rin
Fig. 3(c) fromthe inputimage | in Fig. 3(a), we simultaneously estimate the colors Gand U of
all pixels X and regions R by solving the unified function (9). Fig. 3(d) presents the region-
based colorization generated from G by exploiting the simple soft constraint whereby pixels
in common region ry have the same representative region color uy. We finally produce the
colorization result from the estimated pixel colors U in Fig. 3(e). Our algorithm is based on
the region information by the definition of the higher-order energy function in ( 4). Therefore
the qualities of the regions exert influence on our colorization results. Note that even if some
regions are incorrectly extracted for the higher-order cues as shown in Fig. 3(c), our method
can infer highly accurate and natural colored object with precise boundaries as shown in Fig.
3(e).

3 Experiments

We evaluate our colorization method using several natural images. In our experiments, we
initially obtain the over-segmented regions by Mean Shift segmentation algorithm [ 3]. The
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Figure 4: Examples of the colorizations with respect to the variation of 7 in (4). From the
images (a) with color scribbles, (c),(d),(e) and (f) give the resulting colorizations based on
the regions (b) according to 7. (¢ = 0.1)

Mean Shift algorithm uses two bandwidth parameters (hs, hy) for spatial and range domains,
respectively, and we set (hs,hy) = (7,7) in our tests. And, the 4-connected neighborhoods
were used for the pixel neighborhood system in (1). The three parameters A, T and € in (4)
and (5) are fixed in all experiments, and chosen empirically. In this section, we first analyze
the effect of parameters, and then, the performance of our algorithm is compared with the
state-of-the-art methods [14][10].

3.1 Parameter Settings

In our experiments, we set A in (4) and (5) to have a high value (= 10%), since the estimated
color of each seed should be similar to the initial one determined by the user. And, note that
€ means the weight of the additional unary term estimated from the resulting pixel colors in
(5). So, if there is enough color information from color scribbles, the resulting colorizations
are less sensitive to &, compared with 7 in (4). Also, since the pixel and region colors
are recursively estimated in this unified framework, two parameters 7 and & are mutually
correlative. Therefore we select the only experiment with respect to the variation of t, when
€ is fixed. Fig. 4 shows the colorization results by varying the parameter . With larger ,
the color consistency inside each region is more emphasized and the object boundaries in
the final colorizations are more consistent with the initial regions, as shown in Fig. 4. And
with smaller 7, smoother colors are expressed around the seed pixels. It is important to find
appropriate 7 to reduce the dependence on the edges of inaccurate regions and to alleviate the
over-smoothing effect. In this work, T and & were empirically chosen, and we set 7 = 0.01
and € = 0.1 for all the test images.

3.2 Colorization Results

Now, let us examine the performance of our algorithm for the colorizations of natural im-
ages. We first examine the robustness of our proposed algorithm with respect to the the
scribble properties: size and position. Fig. 5 shows an example of the colorization results
with different sets of scribbles. In this experiment, we evaluate the robustness by the visual
consistency of colorizations under different scribble settings as shown in Fig. 5(a). In Fig.
5(b), we observe that the shortest-path-based work of Yatziv et al. [ 14] is largely sensitive to
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Figure 5: Testing the robustness of the higher-order colorization algorithm, compared with
the state-of-the-art methods [14][10]. From different sets (a) of scribbles, (b),(c) and (d) are
the colorized results by Yatziv et al. [14], Levin et al. [10] and our algorithm, respectively.

the size and position of each scribble, especially in the textured regions. Fig. 5(c) shows that
the work of Levin et al. [10] produces the over-smoothed colorizations with color artifacts
that are clearly visible especially near edges away from the scribbles. Since it deals with the
only pairwise color consistency between the neighboring pixels, enough scribbles that are
tightly positioned along the boundaries are needed. Compared with these two conventional
methods, our method obtains visually more consistent and higher-quality results as shown in
Fig. 5(d). Since our algorithm considers the global region information as well as the local
relationship between the neighboring pixels, it is less dependent on the scribble changes.

Fig. 6 shows our final colorization results on several natural images, compared with
those of the state-of-the-art methods [14] and [10]. In Fig. 6(c) and (d), the previous meth-
ods usually require for the users to delineate complicated boundaries between regions, since
they are sensitive to the scribble size and position. In contrast, our approach provides su-
perior performance with much higher-quality colorization results from even less number of
scribbles (or few pixels) as shown in Fig. 6(e). These comparisons clearly demonstrate the
robustness and accuracy of our algorithm.

4 Conclusions

In this paper, we propose a novel higher-order colorization framework with soft consistency
constraint whereby the pixels in each region, generated by an unsupervised image segmen-
tation algorithm, tend to have similar colors to the representative color of the region they
belong to. Our work has several advantages. First, we automatically and recursively learn
the region colors, defined as higher-order cues, from the resulting pixel colors. Simulta-
neously, we incorporate these high-order cues into the quadratic energy function for pixel
colors, and minimize it in a simple way. Second, our method produces high-quality col-
orization results in natural images. Our experiments demonstrate that our higher-order cues
significantly improve the colorization results. Finally, since our method is less sensitive to
the size and position of each user-given scribble, it provides more convenient interaction for
a user.

For the computation of two quadratic energy functions (4) and (5), two parameters 7 and
€ were chosen empirically. They are not, however, optimal for every image. Moreover, since
some wrong regions can be usually extracted by the unsupervised segmentations, we can
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Figure 6: Colorization results on the natural images. (a) Input images with color scribbles.
(b) Regions generated by an unsupervised image segmentation algorithm [ 3]. Colorizations
by (c) Yatziv et al. [14]; (d) Levin et al. [10]; (e) Our algorithm.

not guarantee that our method always produces the high-quality colorizations. If we use the
well-controlled parameters 7 and &, and other methodologies for generating the regions with
consistent boundaries, better results will be obtained. Therefore our future work will include
the automatic parameter selection and the fusion of other region-based techniques.
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