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Abstract

We present a novel and robust method for localizing and segmenting bilaterally sym-
metric patterns from real-world images. On the basis of symmetrically matched pairs
of local features, our method expands and merges confident local symmetric region
matches by exploiting both photometric similarity and geometric consistency via our new
symmetry-growing framework. It overcomes the limitations of the previous local-feature
based approaches by efficiently exploring the image space to grow symmetry beyond the
detected symmetric features. The experimental evaluation demonstrates that our method
successfully detects and segments multiple symmetric patterns from real-world images,
and clearly outperforms the state-of-the-art methods in accuracy and robustness.

1 Introduction
Our world is full of symmetries. A variety of symmetries occur in nature, living organisms,
and manufactured artifacts, and provide humans with pre-attentive cues [2] that enhance
object recognition. Human beings are very good at detecting symmetry, and understand the
visual world based on the perception and recognition of repeated patterns that are generalized
by the mathematical concept of symmetries [21]. Wagemans [20] views symmetry as one of
the most important aspects of early visual analysis, and recent psychophysical results suggest
that the detection of symmetries under perspective distortion is an integral part of 3D object
perception. Symmetry detection on 2D or 3D images has been an active research area for
over four decades [3, 8, 9, 12, 13, 18, 19, 22]. Despite the long history of the research,
the recent performance evaluation [17] shows that we are still short of a robust and widely
applicable symmetry detector.

In this paper, we propose a novel and robust method for detecting and segmenting bi-
lateral or reflective symmetry which is the most familiar form of symmetry. It enables
reliable detection and segmentation of multiple symmetries from real-world cluttered im-
ages. Our work is inspired by the recent match-growing approaches [1, 5, 7, 10] used in
object-recognition and image registration. On the basis of symmetrically matched feature
pairs [3, 12], our method expands and merges confident symmetric region matches by ex-
ploiting both photometric similarity and geometric constraint of bilateral symmetry in our
novel symmetry-growing framework. Unlike the previous local-feature based methods based
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on voting schemes [3, 9, 12, 19, 22], it can handle both significantly low inliers and defor-
mation by efficiently exploring the image space beyond the detected features.

2 Previous Work
The problem of symmetry detection has been extensively studied in numerous fields includ-
ing visual perception, computer vision, robotics, and computational geometry. The methods
can be broadly classified into global and local feature-based methods. Global methods treat
the entire image as a signal from which symmetric patterns are inferred. Examples include
the work of Marola [13], Keller and Shkolnisky [8], Sun and Si [18]. However, these global
approaches are limited to detecting a single incidence of symmetry, and also greatly in-
fluenced by background clutters. On the contrary, local feature-based methods use local
features such as edges, contours, boundary points, and regions to detect symmetry by group-
ing symmetric sets of local features. The standard way to accumulate symmetry hypotheses
from feature information is to use voting schemes such as the Hough transform. Their main
advantage is to more efficiently detect local symmetries against background clutters in im-
ages that are not globally symmetric. Moreover, the recent development of local invariant
features [11, 14, 15] has brought about significant progress in this approach. Tuytelaars et
al. [19] presented a method for the detection of regular repetitions of planar patterns under
perspective skew using a geometric framework and cascaded Hough transform. Lazebnik et
al. [9] used affine invariant clusters of features to detect symmetries. Loy and Eklundh [12]
proposed an efficient method to exploit the properties of local invariant features for grouping
symmetric constellations of features and detecting symmetry. Cornelius et al. [3] extended
this approach by constructing local affine frames. Although all these local-feature based
methods show more robust performance over global methods, they are largely influenced by
feature detection step, and cannot exploit further information beyond the detected features.

Recently, match-growing approaches [1, 5, 7, 10] are proposed to address the limitation
of conventional local-feature based approaches in the area of object recognition and image
registration. The match-growing approaches [5, 10] expand true matches and eliminate false
matches based on the fact that the true matches grow better than false ones. Cho et al. [1]
integrate match propagation of [5] in the data-driven Monte Carlo dynamics to recognize
and segment common object pairs directly from image pairs. Kannala et al. [7] extend the
quasi-dense matching method of [10] for object recognition and segmentation.

Our symmetry-growing method overcomes the limitations of the previous local-feature
based approaches by efficiently exploring the image space to exploit further information
beyond the detected symmetric features. Multiple clusters of consistent symmetric feature
pairs are directly detected in our growing process without conventional voting procedure of
the Hough transform or RANSAC. Unlike the previous match-growing methods [1, 5, 7, 10],
we propose a novel and efficient multi-layer growing algorithm for avoiding the adverse
effect of outliers in symmetry detection.

3 Overview of Our Approach
Given an image, our method aims to detect and segment all the bilaterally symmetric pat-
terns and infer their quasi-dense correspondences within the symmetric patterns. Figure 1
illustrates a brief overview of our approach. First, we extract local invariant features from
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Figure 1: Overview of our symmetry-growing approach. See the tex for detailed description.

the given image (Fig. 1(a)) as shown in Fig. 1(b). Second, using the appearance around the
detected features and its mirrored features, we obtain potential symmetric matching pairs of
features as in Fig. 1(c). Third, starting from singleton symmetry clusters each containing
a single symmetry match, we simultaneously expand and merge the symmetry clusters by
exploring the image space in our symmetry-growing framework. To establish new symmet-
ric region pairs in expansion, we use sets of element regions consisting of an overlapping
circular grid of regular local regions as shown in Fig. 1(d). Using them, our algorithm grad-
ually grows reliable symmetry clusters as shown in Fig. 1(e)-(f), where the dots with the
same color represent the features in the same cluster. Finally, the reliable symmetric patterns
grown well enough are chosen as in Fig. 1(h), where the detected symmetry is indicated by
the convex hull of the features.

4 Bilateral Symmetry Seeds
Symmetrically matched pairs of local region features [12] are used as seeds for our symmetry-
growing algorithm. Various modern local feature detectors [11, 14, 15] provide robust means
for generating dense features and matching them between images. The distinctiveness of the
matches obtained by local invariant features make these methods well suited for detecting
pairs of symmetric features. Potential bilaterally symmetric matches can be obtained by con-
structing a set of mirrored feature descriptors and matching them against the original feature
descriptors. The reliability of symmetry exhibited by each pair is evaluated by using the
relative locations, orientations and scales of the features in the pair. The remainder of this
section discusses the details of the procedure for detecting the seeds of bilateral symmetries.

4.1 Features and descriptors

A set of feature regions are determined using any affine-invariant or scale-invariant detectors
such as [11, 14, 15] , that detect distinctive features with good repeatability. A detected



4 M.CHO, K.M.LEE: BILATERAL SYMMETRY DETECTION VIA SYMMETRY-GROWING

Figure 2: (a) Matching symmetric feature pairs. (b) Angle relation of a feature pair.

feature region can be represented by its location, orientation, and other region parameters.
In this paper, we use the affine invariant region detector and its matrix parametrization [15].
A detected region Ra is denoted by Ra = (xa,Σa,oa) consisting of its center location, co-
variance matrix, and orientation, respectively. An interior pixel x of the region Ra satisfies
(x− xa)

T Σa(x− xa) ≤ 1. The orientation oa of each feature is evaluated by its dominant
gradient in the neighbor region as in [11]. Other types of features such as the scale-invariant
detector [11] also can be adapted to this representation. After feature extraction, a feature
descriptor ka is generated for each feature region, encoding the local appearance of the fea-
ture after its normalization with respect to the orientation and affine distortion. Any feature
descriptor suitable for matching can be used [16]. The experiments in this paper use MSER
and Hessian affine detector [14, 15] for feature detection and the SIFT descriptor [11] for
feature description.

4.2 Bilaterally Symmetric Feature Pairs

Figure 2(a) illustrates the process of matching symmetric feature pairs from an image. To
describe the appearances of mirrored regions, a mirrored feature descriptor is generated for
each feature. It can be produced by mirroring the original image region about the line along
its orientation or by directly modifying this feature descriptor. As shown in Fig. 2(a), the mir-
rored feature descriptor k′

b describes a mirrored version of the feature region Rb associated
with the feature descriptor kb. A set of potentially symmetric feature pairs are formed based
on the similarities between the original descriptors and the mirrored descriptors. As shown
in Fig. 2(a), a symmetric feature pair (Ra,Rb) is matched since the original descriptor ka and
the mirrored descriptor k′

b is similar enough. For matching, we calculate the similarities of
descriptor pairs for all the possible symmetric feature pairs, and simply collect the best 300
matches allowing multiple correspondences for each feature. Usually, in this initial match-
ing, the true match ratios become much lower than the one-to-one nearest neighbor (NN)
methods, but it saves many true matches possibly eliminated by the NN matching methods
in the presence of repeated patterns.

For a symmetric match Mi = (Ra,Rb), its symmetry is evaluated by a function of the rel-
ative locations, orientations and scales of Ra and Rb. As in [12], based on the first component
of Reisfeld’s [4] phase weighting function, an angular symmetry weighting Φi ∈ [−1,1] is
computed as

Φi = 1− cos(oa +ob −2θab), (1)
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Figure 3: (a) Support match Mi = (Ra,Rb) and a region Rc. (b) Propagation of the region Rc
by Mi. (c) Region refinement.

where the angles are defined as illustrated in Fig. 2(b).
The centroid of the symmetry match ci and the orientation of its local symmetry axis αi

are estimated as follows.

ci = (xa +xb)/2, αi = (oa +ob)/2. (2)

All the potential symmetry matches with positive phase weights are used for the symme-
try seeds in the next step.

5 Symmetry-Growing Technique

In this section, we describe how our algorithm grows symmetry from the symmetry seeds
obtained at the previous step.

5.1 Symmetry Propagation

The basic building block of our symmetry-growing algorithm is the symmetry propagation,
which is proposed on the basis of the propagation attempt and refinement in [5].

As illustrated in Fig. 3, consider a local symmetry match Mi = (Ra,Rb) in the case that
a red elliptical region Ra is matched to Rb. For region Ra and Rb, normalizing transforma-
tion function Ha and Hb can be calculated, respectively, which transform the pixels in the
regions onto the normalized unit circle with the same orientation [6]. Then, its reflective
transformation Ti from Ra to Rb is defined as follows:

Ti = H−1
b TMHa, (3)

where TM denotes a mirroring transformation about the normalized orientation.
Suppose that a region Rc is given that is close enough to Ra and lies on the same symmet-

ric pattern. And, now we aim to generate another symmetry match M j = (Rc,Rd) using Mi
and Rc. In that case, we state that the supporter match Mi attempts to propagate the region Rc.
To achieve it, we approximate the symmetric region Rd (close to Rb) by Rd = TiRc as shown
in Fig. 3(b). Then, the propagated region Rd are refined locally to find a better match. The
refiner adjusts Rd to produce the maximum ZNCC (Zero-mean normalized Cross correla-
tion) similarity with Rc by locally searching the parameter space of its affine transformation
as shown in Fig. 3(c). For the details of refinement, we refer to [5].
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Algorithm 1 Multi-Layer Symmetry-Growing Algorithm
1: Obtain symmetry seed matches M = {M1,M2, ...,Mn}
2: Construct singleton clusters Ck = {Mk}(k = 1,2, ..,n)
3: Initialize their expansion layers Γk = {R1,R2, ...,Rm}(k = 1,2, ..,n)
4: Put all the seeds into the supporter list L = {M1,M2, ...,Mn}
5: repeat
6: The supporter Mi with the highest similarity is removed from the supporter list L

7: Identify the cluster Cp(3 Mi) which contains the supporter match Mi
8: Try to propagate its spatial neighborhood regions N (Mi,Γp) by the supporter Mi
9: The reliable matches are accepted and stored in the cluster Cp, and also added to the

supporter list L

10: The propagated regions are eliminated from the expansion layer Γp
11: if equivalent matches are detected between different clusters then
12: Merge the clusters including the equivalent matches
13: Combine the expansion layers of the merged clusters by intersection of the layers.
14: end if
15: until The supporter list L is empty
16: Eliminate unreliable symmetry clusters

5.2 Multi-Layer Symmetry-Growing Algorithm

Our symmetry-growing algorithm is summarized in Algorithm 1. We start from a set of
symmetry seed matches obtained in the previous section. Using the seeds, singleton sym-
metry clusters are constructed by assigning each symmetry seed match to each symmetry
cluster. Each cluster generates its own expansion layer which provides a space for expan-
sion. It consists of a set of local regions in the overlapping circular grid which covers the
image plane as shown in Fig. 1(d). Then, the list of supporter matches L is initialized as the
set of all the obtained symmetry seeds. In each iteration, the supporter match Mi with the
highest similarity is removed from the supporter list. The cluster containing Mi is denoted
by Cp(3 Mi).

Expansion
For the supporter match Mi, the candidate neighborhood regions are selected in the cur-

rent expansion layer of the cluster Cp for propagation. They consists of the unoccupied
regions on the expansion layer, which are close to the larger region of the matching region
pair in Mi. Suppose that xi represents the center position of the larger region in the region
pair of Mi, and xc denotes the center position of a region Rc. The current expansion layer
of the cluster which includes Mi is denoted by Γp. Then, the spatial neighborhood regions
N (Mi,Γp) is defined as follows.

N (Mi,Γp) = {Rc | |xi −xc| ≤ 2re,Rc ∈ Γp}, (4)

where re means the radius of overlapping circular regions in the expansion layer. It collects
the neighborhood regions unoccupied by the cluster of the support match. The candidate
regions are propagated by the supporter match Mi as in Fig. 3. Note that the direction of
symmetry propagation in this manner is from the larger region of the support match to the
smaller region of the support match. This propagation to the down-scale direction maintains
better accuracy then the opposite direction.
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The propagated symmetry matches are accepted only when both the photometric simi-
larity and the property of local symmetry are reliable. We use the ZNCC for the photometric
similarity, and the phase weight of Eq. 1 for the reliability of local symmetry. The matches
exceeding both the similarity threshold δs and the phase weight threshold δΦ are accepted
and included in the cluster of Mi. For further expansion, the accepted matches are also added
to the supporter list L . The regions propagated by the accepted matches are eliminated from
the expansion layer Γp. Following this procedure, the supporter list, existing clusters, their
expansion layers are all sequentially updated. The iteration continues until the supporter list
becomes empty. Note that the expanded regions of different clusters can mutually overlap
since each cluster has its own expansion layer. That is, the symmetry matches occupying the
same region, called “region-sharing matches", can exist in our framework if any two of the
matches do not belong to the same cluster. Unlike the previous single-layer match-growing
methods [1, 5, 7, 10], our multi-layer approach enables to produce multiple symmetry clus-
ters occupying the same regions and avoid the cases where expanded outlier clusters prevent
inlier clusters to expand.

Merge
If a propagated match in expansion is significantly similar to existing one(s) in the same

cluster of the supporter match, such an “equivalent match" is not allowed to expand for
avoiding duplication. Otherwise, if the propagated match is equivalent to a match in a differ-
ent cluster, the two relevant cluster are merged. In our method, two matches are determined
as equivalent matches when they overlap over 50% of the area in both regions of the pair.
When two clusters merge, their expansion layers are also combined into the intersection of
the two layers. Thus, although our multi-layer approach multiplies the space to explore from
a single-layer approach of the previous methods [1, 5, 7, 10], the merge process gradually
reduces the number of the layers and guide the expansion process to concentrate on plausi-
ble expansion. Likewise, the expansion process also encourages the merge process to find
compatible symmetry clusters by gradually growing them. Through these cooperative pro-
cesses, our algorithm finds symmetric patterns efficiently in spite of significant outliers in
initial seed matches.

Symmetry Cluster Verification
After the end of all iterations, we verify the reliability of final clusters. Typically, more

reliable symmetry clusters are likely to grow larger. Thus, for a simple reliability measure of
each symmetry cluster, we adopt the area of the convex hull of the local region center points
in the cluster. We determine that a symmetry cluster is reliable if both of two reflective areas
of the cluster are larger than δa|I| where |I| denotes the area of the given image I.

6 Experiments

In all our experiments, the parameter values for the algorithm are fixed as follows: the ZNCC
similarity threshold δs = 0.7, the phase weight threshold δΦ = 0.99, and the reliable cluster
threshold δa = 0.02. The values of δs and δΦ is used for rejecting unreliable symmetry
matches in expansion, thus we can control photometric variation and geometric deformation
by varying them. In generating expansion layers, we set the radius of the overlapping circular
regions re as l/25 where l denotes the shorter length of the axes of the given image.

We quantitatively evaluated our method on the test dataset of 91 images used in the
recent performance evaluation of symmetry detection [17]. Examples of our results are
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Figure 4: Symmetry detection comparison on the dataset of [17]. LE06 and LHS05 denote
the methods of [12] and [22], respectively.

Image Type Synthetic Single Synthetic Multiple
Algorithm LE06 LHS05 Ours LE06 LHS05 Ours

S0 92% 62% 100% 35% 28% 77%
RFP 15% 0% 15% 4% 8% 33%

Image Type Real Single Real Multiple
Algorithm LE06 LHS05 Ours LE06 LHS05 Ours

S0 84% 29% 94% 43% 18% 68%
RFP 68% 3% 69% 44% 0% 17%

Table 1: Performance comparison on the dataset of 91 images from [17].

shown in Fig. 4 and 5 1 where the convex-hull segmentation and the major axis of each
symmetry cluster are visualized. Each color represents the identity of each symmetry cluster.
The examples demonstrate that our symmetry-growing method detects the entire region of
symmetric pattern with dense correspondences in each symmetry cluster, so that it provides
more accurate and robust performance than the previous methods. Park et al. compared
two state-of-the-art bilateral symmetry detection algorithms [12, 22] in their evaluation [17].
We compared our results with them. For comparison, sensitivity and false positive rate are
measured. Suppose T P is the number of true positives: symmetries in the image that are
identified correctly, FP is the number of false positives: non-symmetries detected by the
algorithm as symmetries, and GT is the number of ground truth symmetries. Then, the
sensitivity is defined as S0 = T P/GT and the false positive rate as RFP = FP/GT . All
the results are summarized in Table.1. Note that the results of [12] and [22] in Table.1
are obtained by testing the algorithms on four image scales (from 1 to 1/4 of the original
size) and choosing the best result [17]. Whereas our results are obtained by testing only
on the original size of the images. Nevertheless, for sensitivity S0, our algorithm clearly
outperforms the methods of [12, 22] in all image types.

In the sense of false positive rate RFP, our method appears not clearly better than two

1The dataset, the ground truth, and the result images of [12] and [22] are borrowed from
http://vision.cse.psu.edu/evaluation.html
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Figure 5: Examples of symmetry detection and segmentation on the dataset of [17].

other methods except for the case of real images with multiple symmetry. However, the
reason is that our method detects more true symmetric patterns than the ground truth data
of the dataset. That is, a great portion of our false positive detections are not false in fact.
For examples, each image at the 3rd and 4th row in Fig. 5 has only one symmetric pattern
according to the ground truth data, but our method detects even more true bilateral symmetric
patterns. Of course, it also happens in multiple symmetry dataset as images in 8th row. These
cases were prevalent in our results. Therefore, the experiments demonstrate that our method
is highly robust and accurate and is widely applicable to the real-world complex images.

7 Conclusion
In this paper we presented a novel approach to bilaterally symmetric patterns detection and
segmentation, which deals with multiple symmetry in real-world images. On the basis of
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a local-feature based approach, it efficiently explores the image plane to exploit further in-
formation beyond detected symmetric features. In this strategy, our method overcomes the
limitations of the previous symmetry detection methods with a novel multi-layer symmetry-
growing framework which detects overlapping symmetries and avoiding interference of out-
liers. As demonstrated in the experiments, our method clearly outperforms state-of-the-art
methods and provides robust detection on real-world complex images. Our approach can be
extended for a variety of pattern analysis tasks.
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