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Abstract
We present a novel method for mouth localization in the context of multimodal

speech recognition where audio and visual cues are fused to improve the speech recog-
nition accuracy. While facial feature points like mouth corners or lip contours are com-
monly used to estimate at least scale, position, and orientation of the mouth, we propose
a Hough transform-based method. Instead of relying on a predefined sparse subset of
mouth features, it casts probabilistic votes for the mouth center from several patches in
the neighborhood and accumulates the votes in a Hough image. This makes the localiza-
tion more robust as it does not rely on the detection of a single feature. In addition, we
exploit the different shape properties of eyes and mouth in order to localize the mouth
more efficiently. Using the rotation invariant representation of the iris, scale and orien-
tation can be efficiently inferred from the localized eye positions. The superior accuracy
of our method and quantitative improvements for audio-visual speech recognition over
monomodal approaches are demonstrated on two datasets.

1 Introduction
Speech is one of the most natural forms of communication and the benefits of speech-driven
user interfaces have been advocated in the field of human computer interaction for several
years. Automatic speech recognition, however, suffers from noise on the audio signal, un-
avoidable in application-relevant environments. In multimodal approaches, the audio stream
is augmented by additional sensory information to improve the recognition accuracy [22].
In particular, the fusion of audio and visual cues [19] is motivated by human perception,
as it has been proven that we use both audio and visual information when understanding
speech [16]. There are indeed sounds which are very similar in the audio modality, but easy
to discriminate visually, and vice versa. Using both cues significantly increases automatic
speech recognition performance, especially when the audio is corrupted by noise.

To extract the visual features, a region-of-interest [18], a set of feature points [27], or
lip contours [14], need to be localized. Although the lip contours contain more information
about the mouth shape than the appearance within a bounding box, they do not necessary en-
code more information valuable for speech recognition, as demonstrated in [21]. In addition,
extracting a bounding box is usually more robust and efficient than lip tracking approaches.
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(a) (b)
Figure 1: a) Facial points like mouth corners (blue dots) are sensitive to occlusions. b) Our
Hough transform-based approach localizes the center of the mouth (red dot) even in the case
of partial occlusions. The ellipse indicates the region of interest for speech recognition.

While standard approaches extract mouth corners to estimate scale, position, and orien-
tation of the mouth, we propose a Hough transform-based method for mouth localization.
A certain feature point or patch might be difficult to detect due to occlusions, lighting con-
ditions, or facial hair, therefore our method accumulates the votes of a set of patches into
a Hough image where the peak is considered to be the mouth center. This facilitates the
localization of the mouth even when a facial feature like a lip corner cannot be detected, as
shown in Figure 1. To make the process faster, we exploit the different shape properties of
eyes and mouth: a) being the shape of the iris unique and rotation invariant, it can be very
efficiently localized using isophote curvature [25]. b) Knowing the approximate orientation
and scale of the face from the eye centers, the various shapes of the mouth can be learned
using randomized Hough trees [6]. Without the eye detection, scale and orientation would
have to be handled by the mouth detector, yielding higher computational cost.

2 Related Work

Audio-visual speech recognition (AVSR) has been pioneered by Petajan [19] and it is still
an active area of research. Most approaches focus on the mouth region as it encodes enough
information for deaf persons to achieve a reasonable speech perception [24]. In order to fuse
audio and visual cues, we employ the commonly used multi-stream hidden Markov models
(MSHMM) [29], but other approaches could be used, based for example on artificial neural
networks [11], support vector machines [7], or AdaBoost [28].

As visual features, lip contours [14], optical flow [9], and image compression techniques
like linear discriminant analysis (LDA), principal component analysis (PCA), discrete cosine
transform (DCT), or discrete wavelet transform (DWT) [22], have been proposed. Within
monomodal speech recognition (lip reading), snakes [3] and active shape models [12, 15]
have been intensively studied for lip tracking. Most of these approaches assume that a
normalized mouth region can be reliably extracted, which is addressed in this work. Lip
contours-based methods do not encode all possible geometric information (like the tongue),
therefore space-time volume features have been proposed for lip-reading in [17]. In order to
build these macro-cuboïd features, it is again necessary to reliably extract the mouth regions.
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Figure 2: Overview of our AVSR system. The visual pipeline is shown at the top: face track-
ing, eye detection and tracking, mouth localization on images scaled and rotated according to
the eye positions. At the bottom right, the features extracted from the stream of normalized
mouth images and from the audio signal are fused allowing the actual speech recognition.

3 Overview

The pipeline of our AVSR system is depicted in Figure 2. The first necessary step is face
detection, where we use the algorithm proposed by Viola and Jones [26]. To cope with
appearance changes, partial occlusion, and multiple faces, we employ an online-boosting
tracker [8] that uses the currently tracked patch and its surroundings respectively as positive
and negative samples for updating the internal classifier. Assuming the face to be nearly
frontal, the bounding box returned by the tracker allows us to estimate the rough positions
of the eyes by using anthropometric relations. The scale and in-plane rotation of the face
are then estimated by filtering the positions of the detected irises (Section 4.1). With this
information at hand, we crop the lower part of the face image and normalize it such that
the mouth is horizontal and has a specific size, thus being able to run the mouth detection
(Section 4.2) at only one scale and rotation, speeding up drastically the computation time.
Finally, features are extracted from the stream of normalized mouth images and from the
audio signal in order to recognize the spoken words (Section 5).

4 Normalized Mouth Region Extraction

4.1 Eye Localization

We use the method of Valenti et. al. [25] for accurate eye center localization, based on
isophote curvature. The main idea relies on the radial symmetry and high curvature of the
eyes’ brightness patterns. An isophote is a curve going through points of equal intensity, its
shape being invariant to rotations and linear changes in the lighting conditions.
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For each point p in the image, a displacement vector is computed as:

D(x,y) =−
Lx

2 +Ly
2

Ly
2Lxx−2LxLxyLy +Lx

2Lyy
(Lx,Ly), (1)

where Lx and Ly are the image derivatives along the x and y axes, respectively. The value of
an accumulator image at the candidate center c = p+D is incremented by the curvedness of

p in the original image, computed as
√

Lxx
2 +2Lxy

2 +Lyy
2. In this way, center candidates

coming from highly curved isophotes are given higher weights.
Knowing that the pupil and the iris are generally darker than the neighboring areas, only

transitions from bright to dark areas are considered, i.e., situations where the denominator of
equation (1) is negative. The eye center is finally located by mean shift.

The above method fails when the iris is not visible, e.g., due to closed eyes or strong
reflections on glasses. When tracking a video sequence, this can lead to sudden jumps of the
detections. Such errors propagate through the whole pipeline, leading to wrong estimates of
the mouth scale and rotation, and eventually worsening the overall AVSR performance. To
reduce these errors, we smooth the pupils’ trajectories using two Kalman filters, one for each
eye center. The prediction of the eye position for the incoming frame is used as the center of
the new region-of-interest for the pupil detection.

4.2 Mouth Localization
Hough transform-based methods model the shape of an object implicitly, gathering the spa-
tial information from a large set of object patches. Thanks to the combination of patches
observed on different training examples, large shape and appearance variations can be han-
dled, as it is needed in the case of the mouth, greatly changing its appearance between the
states open and closed. Furthermore, the additive nature of the Hough transform makes these
approaches robust to partial occlusions. For localization, the position and the discriminative
appearance of a patch are learned and used to cast probabilistic votes for the object cen-
ter as illustrated in Figure 3 a). The votes from all image patches are summed up into a
Hough image (Figure 3 b), where the peak is used to localize the mouth region (Figure 3 c).
The whole localization process can thus be described as a generalized Hough transform [2].
The so-called implicit shape model (ISM) can be modeled either by an explicit codebook as
in [13] or within a random forest framework [6]. An approach similar to [13] was employed
for facial feature localization in [5]. Since the construction of codebooks is expensive due to
the required clustering techniques and the linear matching complexity, we follow the random
forest approach where learning and matching are less computationally demanding.

A random forest consists of several randomized trees [1, 4] where each node except for
the leaves is assigned a binary test that decides if a patch is passed to the left or right branch.
Random forests are trained in a supervised way, and the trees are constructed assigning each
leaf the information about the set of training samples reaching it, e.g., the class distribu-
tion for classification tasks. At runtime, a test sample visits all the trees and the output is
computed by averaging the distributions recorded during training at the reached leaf nodes.

Learning Each tree in the forest is built based on a set of patches {(Ii,ci,di)}, where Ii
is the appearance of the patch, ci the class label, and di the relative position with respect to
the mouth center, computed from the annotated positions of the lip corners and outer lips’
midpoints. For mouth localization, we use patches of size 16× 16 (Figure 3 a) where the
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(a) (b) (c)
Figure 3: a) For each of the emphasized patches (top), votes are cast for the mouth center
(bottom). While lips (yellow) and teeth (cyan) provide valuable information, the skin patch
(magenta) casts votes with a very low probability. b) Hough image after accumulating the
votes of all image patches. c) The mouth is localized by the maximum in the Hough image.

appearance I is modeled by several feature channels I f , which can include raw intensities,
derivative filter responses, etc. The training patches are randomly sampled from mouth re-
gions (positive examples) and non-mouth regions (negative examples), where the images are
normalized according to scale and orientation. The samples are annotated with the binary
class label c ∈ {p,n} and the center of the mouth in the case of positive examples.

Each tree is constructed recursively starting from the root. For each non-leaf node, an
optimal binary test is selected from a set of random tests evaluated on the training patches
that reach that node. The selected test splits the received patches into two new subsets which
are passed to the children. The binary tests t(I )→{0,1} compare the difference of channel
values I f for a pair of pixels (p,q) and (r,s) with some handicap τ:

t f ,p,q,r,s,τ(I ) =

{
0, if I f (p,q)− I f (r,s) < τ

1, otherwise.
(2)

A leaf is created when the maximal depth of the tree, e.g. 15, or the minimal size of a
subset, e.g. 20, are reached. Each leaf node L stores information about the patches that have
reached it, i.e., the probability pmouth

(
I
)

of belonging to a mouth image (the proportion of
positive patches that have reached the leaf) and the list DL = {di} of corresponding offset
vectors. The leaves thus build an implicit codebook and model the spatial probability of the
mouth center x for an image patch I located at position y, denoted by p

(
x|I (y)

)
. Such

probability is represented by a non-parametric density estimator computed over the set of
positive samples DL and by the probability that the image patch belongs to the mouth:

p
(
x|I (y)

)
=

1
Z

pmouth
(
I
)( 1
|DL| ∑

d∈DL

1
2πσ2 exp

(
−||(y−x)−d||2

2σ2

))
, (3)

where σ2I2×2 is the covariance of the Gaussian Parzen window and Z is a normalization
constant. The probabilities for three patches are illustrated in Figure 3 a).

Since the quantity in (3) is the product of a class and a spatial probability, the binary tests
need to be evaluated according to class-label uncertainty Uc and spatial uncertainty Us. We
use the measures proposed in [6]:

Uc(A) = |A| ·Entropy({ci}) and Us(A) = ∑
i:ci=p

(di− d̄)2, (4)
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where A = {(Ii,ci,di)} is the set of patches that reaches the node and d̄ is the mean of the
spatial vectors di over all positive patches in the set1. For each node, one of the two measures
is randomly selected with equal probability to ensure that the leaves have both low class and
spatial uncertainty. The optimal binary test is selected from the set of randomly generated
tests tk(I ) by

argmin
k

(
U?({Ai| tk(Ii)=0})+U?({Ai| tk(Ii)=1})

)
(5)

where ? = c or s, i.e., by the quality of the split.

Localization In order to localize the mouth in an image, each patch I (y) goes through
all the trees in the forest {Tt}T

t=1, ending up in one leaf, where the measure (3) is evaluated.
The probabilities are averaged over the whole forest [1, 4]:

p
(
x|I (y);{Tt}T

t=1
)

=
1
T

T

∑
t=1

p
(
x|I (y);Tt

)
. (6)

These probabilistic votes are then accumulated in a 2D Hough image, see Figure 3 b)2. The
location where the generalized Hough transform gives the strongest response is considered
to be the center of the mouth (Figure 3 c).

5 Audio-Visual Speech Recognition
In order to fuse the audio and visual cues for speech recognition, we rely on the commonly
used multi-stream hidden Markov models [29]. Each modality s is described by Gaussian
mixtures, i.e., the joint probability of the multimodal observations O = (o1, · · · ,ot) and the
states Q = (q1, · · · ,qt) is given by:

p(O,Q) = ∏
qi

bqi(oi) ∏
(qi,q j)

aqiq j where b j(o) =
2

∏
s=1

(
Ms

∑
m=1

c js,mN(os; µ js,m ,Σ js,m)

)λs

, (7)

where aqiq j are the transition probabilities, N(o; µ,Σ) are multi-variate Gaussians with mean
µ and covariance Σ, and c js,m are the weights of the Gaussians. The model parameters are
learned for each modality independently. The parameters λs ∈ [0,1] control the influence of
the two modalities with λ1 +λ2 = 1. As cues, we extract mel-frequency cepstral coefficients
from the audio stream and DCT features from the normalized mouth images where only the
odd columns are used due to symmetry [20, 22]. For both features, the first and second
temporal derivatives are added and the sets normalized as to have zero mean.

6 Experiments
We evaluate our system testing each component separately. First we assess the quality of
the scale and orientation estimated from the eye detection method, then we move on to the
mouth localization accuracy and compare our results with a state-of-the-art method for facial
feature points detection, finally we show the applicability of our system for an AVSR task.

1Entropy({ci}) =−c̄ log c̄− (1− c̄) log(1− c̄), where c̄ = |{ci|ci = p}|/|{ci}|.
2In practice, we go through each image location y, pass the patches I (y) through the trees, and add the discrete

votes pmouth
(
I
)
/|DL| to the pixels {(y−d|d ∈DL} for each tree. The Gaussian kernel is then applied after voting.
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(a) (b)
Figure 4: a) Accuracy vs. eye distance error (scale). b) Accuracy vs. angle error (rotation).
The plots show the percentage of correctly estimated images as the error threshold increases.

Estimation of Scale and Orientation We run our tests on the BioID face database [23],
composed of 1521 greyscale images of 23 individuals, acquired at several points in time
with uncontrolled illumination, and at the resolution of 384x288 pixels. Subjects were often
photographed with their eyes closed, showing different facial expressions, and many of them
wore glasses. Manually annotated ground truth is provided for the pupils and for 18 other
facial points. We divide the database in four sets, training the mouth detector on three, testing
on the fourth, and averaging the results of all combinations.

As first experiment, we run the whole pipeline: we detect the face in each image (taking
the largest in case of multiple detections), then we detect the eyes in the two upper quar-
ters of the face rectangle and compute the errors for the eye distance (scale) and the angle
formed by the line connecting the eyes and the horizontal axis (rotation). Figure 4 shows
the accuracy for the two measures, i.e., the percentage of correct estimations as the error
threshold increases. In 4 a) the accuracy is plotted against the error between the detected
eye distance dEye and the ground truth dGT , as err = abs(dEye−dGT )

dGT . In 4 b) the accuracy
is plotted against the error of the estimated angle in degrees. It is worth noting that, for 17
images (1.12% of the total), no face was detected at all; we do not consider those for the
analysis. Moreover, sometimes the face detector gave wrong results, getting stuck on some
clutter in the background; this partly explains the curve in Figure 4 a) never reaching 100%.

Mouth Localization Using again the BioID database, we evaluate the accuracy of the
mouth detection and compare our results to the output of the facial points detector (FPD)
of Vukadinovic and Pantic [27], for which the code is made available. As we localize the
mouth center rather than the corners, we compute the center from the four mouth corners
provided by the ground truth and the FPD. As already mentioned, face detection does not
always succeed; indeed the FPD failed in 9.67% of the cases. We only take into account
images where both methods detect a face, however, there are still some false detections
which increase the error variance. In order to decrease the influence of errors originated in
the eye detection part, we perform a second test concentrating on the mouth localization only,
using the ground truth of the eye positions. As the curve in Figure 5 a) shows, our method
outperforms the FPD for the mouth localization task, both in the “full detection” (face, eyes,
mouth), and “mouth only” type of experiment. Figure 6 shows some sample results; the
successes in the first row indicate that the full pipeline can cope with difficult situations like
the presence of glasses, facial hair, and head rotations, however, failures do occur, as shown
in the second row. We also run the “mouth only” test varying two parameters of the Hough-
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(a) (b)
Figure 5: a) Accuracy vs. mouth center localization error (in pixels) between Facial Point
Detector [27] (blue), our full pipeline (red), and the mouth localization given the eye position
from ground truth. b) Mouth localization error in pixels vs. stride and number of trees.

Figure 6: Some examples of successes (top row) and failures (bottom row) of the system.
The bottom-left image shows a face detection failure.

based detector: the stride and the number of trees; the results in Figure 5 b) show that the
mean error (in pixel) remains low (around 2) even for a large stride and few trees.

Speech Recognition As the goal of our system is to automatically provide mouth images
for AVSR purposes, we test it on the CUAVE database [18], consisting of videos recorded in
controlled audio-video conditions, at 29.97fps interlaced, with a resolution of 740x480. Each
of the 36 subjects repeats the digits from “zero” to “nine” in American English. We concen-
trate on the subset of the database where subjects appear alone, keeping the face nearly
frontal, and use a mouth detector trained on the BioID database. The CUAVE videos are
deinterlaced and linearly interpolated to match the frequency of the audio samples (100Hz).
The power of AVSR is clear when the audio channel is unreliable, we therefore add white
noise to the audio stream. We train on clean audio and test at different levels of Signal to
Noise Ratios. To run the speech recognition experiments, we use the system of [10], without
the automatic feature selection part. For the audio-visual fusion, we keep the audio and video
weights λ1 and λ2 fixed for each test, and run several trials varying the weights from 0.00
to 1.00 in 0.05 steps, at the end we pick the combination giving the best recognition rate for
each SNR. The accuracy is defined as the number of correctly recognized words, C, minus
the number of insertions, I (false positives detected during silence), divided by the number
of words, N [29]. We split the 36 sequences in 6 sets and perform cross-validation by train-
ing on five groups while testing on the sixth and averaging the results of all combinations.
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Figure 7 a) shows the performance for a fixed number of visual features (80), at several SNR
levels. We compare to the results obtained from manually extracted mouth-regions, which
give the upper bound for the accuracy obtained with automatic extraction. The multimodal
approaches always outperform the monomodal ones, moreover, our automatic method for
mouth ROI extraction performs only slightly worse than the manual one. In Figure 7 b),
we show the accuracy of the recognizer when only video features are used as their number
increases: our approach performs best with 80 visual features (58.85%), while for greater
sets the performance decreases slightly.

(a) (b)
Figure 7: a) Word recognition rate for the audio-visual system using 80 visual features
at different SNRs, for automatically and manually extracted mouth images, compared to
monomodal results. b) Influence of the number of features in video-only speech recognition.

Processing Speed When analyzing videos on a 2.8 GHz machine, the presented system
(implemented in C++ without optimization efforts) runs at about 4fps. Most of the compu-
tation is concentrated in the mouth localization part, indeed the face plus eyes tracking parts
together run at 53fps. A sensible decrease in processing time with a low price in accuracy
can be achieved by loading a smaller number of trees and introducing a stride: for 10 trees
and a stride of 4, we achieve 15fps.

7 Conclusion
We have presented a novel and efficient method for mouth localization which provides the
accuracy needed for audio-visual speech recognition (ASVR). Our experiments show that it
outperforms a state-of-the-art facial points detector and that the achieved word recognition
rate for ASVR is near to the boundary obtained by employing manually cropped mouth
regions. In order to achieve nearly real-time mouth localization, scale and orientation of the
face are estimated from filtered irises’ detections. A further speed-up with a small price in
accuracy can be achieved by reducing the number of trees and sampling rate by introducing
a stride. The proposed method is not only relevant for AVSR but also for lip reading and
facial expression recognition where a normalized region-of-interest is usually required. The
approach is independent of the employed recognition system as it does not necessarily have
to be coupled with multi-stream hidden Markov models.
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