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Abstract

This paper presents a method for estimating digpariages from a stereo image
sequence. While many existing stereo algorithmskweell on a single pair of stereo
images, it is not sufficient to simply apply them temporal frames independently
without considering the temporal consistency betwadjacent frames. Our method
integrates the state-of-the-art stereo algorithrt thie scene flow concept in order to
capture the temporal correspondences. It comph&edédnse disparity images and scene
flow in a practical and unified process: the difyas initialized by a hybrid stereo
approach which employs the over-segmentation baseeo and pixelwise iterative
stereo; then the scene flow, estimated via a vanalt approach, is used to predict the
disparity image and to compute its confidence nuale next frame. The prediction is
modeled as a prior probability distribution andoislt into an energy function defined
for stereo matching on the next frame. The dispaan be estimated by minimizing this
energy function. Experimental results show that algorithm is able to estimate the
disparity images in an accurate and temporally isterst fashion.

1 Introduction

3D cinema is making a third comeback in history andokddike it is here to stay around
this time with over a 1000 theatres (just in the USA)aalyeequipped with screens to
show movies created in stereo. Set makers and the rhlglywood studios are
scrambling to standardize a 3D format in order to biiregsame experience to the home.
Autostereoscopic displays (no-glasses 3D displays) the biggest potential for bringing
3D to the home in the long term. However, a pragmatic fof2# that contains parallax
or disparity at its core is crucial for the success of thisggays.

The problem of estimating the disparity images foteae® image sequence has been
an active research topic in the vision community for yngears. It is a challenging
problem for several reasons: first, the difficulties thase from just a single pair of
stereo frames, such as the presence of textureless amd occlusions, image noise and
errors, and different radiometric properties of muidticameras; and second, the
difficulties that arise from the sequence, such asdbjgict movement, motion blurring,
etc. Some existing stereo match algorithms can aclgewd results on a single pair of
stereo frames [1,4,5,6]. They formulate the problem withh energy minimization
framework and the energy is then optimized using one of lar optimizatian
methods such as graph cuts [7,8] or belief propagation [3,4,5, %128098 HO2HIE D 55
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However, these methods are not sufficient for depthmasitn on a stereo image
sequence, without considering the temporal consistentweba adjacent frames.
Previous research shows that better and more camséigparity maps can be achieved
by incorporating temporal constraints into stereo modeld 7168,19,20,21].

In this paper, we propose a method to estimate therdispaaps for a stereo image
sequence. The approach takes the advantages of an oventdgmebased stereo
algorithm and integrates it into a pixel based algorithmclvleads to good performance
on a single pair of stereo images. Furthermore, weeinibe: temporal consistency of
disparity maps using scene flow [14] (also known as digpfaw), which captures the
dense 3D motion in the scene from a given view. The sceneidlbwilt into the stereo
models for the next frame as a soft constraint, whichsh& resolve stereo ambiguity
from the temporal domain, while at the same time redudie error propagation in
disparity maps.

1.2 Related Work

Recent research shows that grouping pixels with similardoto segments can reduce
the depth ambiguity within textureless regions and allawpfecise delineation of object
boundaries corresponding to depth discontinuities [10,11,12]. Zigtick. [11] use an
over-segmentation scheme to represent a scene aseationllof small fronto-parallel
planar segments. This approach is robust to noise andiiytéms by computing match
values over entire segments rather than single pixels. Color-begméstation also helps
to more precisely delineate object boundaries and relloicedary artifacts. The depths
of the segments are computed using loopy belief propamatithin a Markov Random
Field framework.

However, segment based approaches have a common drawbablat image
segmentation based on only color information is not stersi with object boundaries
and may span depth discontinuities. The input images are seghiand separate pre-
processing step and one cannot recover from any erewrsed by the segmentation
process. Taguchi et al. [12] further improve on this bytigi estimating image
segmentation and depth information. The segment shapes arlk dapt updated
alternatively and iteratively. This technique has diffies with handling surfaces that
are not fronto-parallel since it estimates dispdigtysegments with the assumption that
these segments are fronto-parallel. In our method describeskdtion 2, we use a
different technique to account for the segmentation errors.

For stereo over image sequences, some techniques havepropesed to obtain
accurate disparity maps by utilizing consistency in thepterad domain [16,17]. Some of
them assume either that the scenes are static/qatisit that the motion is negligible
compared to the sampling frequency [17]. These appreabhee difficulty handling
dynamic scenes or scenes with constant lighting.

Temporal consistency has been explored for dynamic sderié8,19,20,21]. Tao et
al.’s approach [19] segments the input images into homogsneolor regions and
models each segment as a 3D planar surface patch. The iprgeat a given planar
patch on two adjacent frames are interpreted by a teinponaography. The temporal
homography, together with the spatial homography, is theml tseestimate the
parameters of the planar patch. Since their approach risesggtion-based, the accuracy
of the results are limited by the image segmemadigorithm. In Leung et al.’s approach
[18], the temporal consistency is enforced by miningzthe difference between the
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disparity maps of adjacent frames. This approach mag tifficulties in handling scenes
that contain large motions by penalizing disparity charf@ays, which may also be a
problem for Larsen et al.'s approach [21]. Gong's method [@6dels temporal

consistency in disparity space using the concept of sdewe But the computation is
optimized for real-time online stereo using the local anethod.

Variational methods have been exploited to compute ogdtmalin a lot of research
work. The best results in terms of accuracy were obtaige®fdx et al. [13]. The global
energy is only linearized inside the minimization aldortafter warping the image at
time t+1 on to the image at time [14] further extends optical flow into scene flow
estimation. The method computes scene flow by joint esitm of the disparity maps
and the motion field from a calibrated stereoscopic imageeseguwithin a unified
variational framework. In [15], the depth and 3D motion are@dpled because the nature
of motion estimation and disparity estimation are \different and the problems can be
solved more efficiently.

This paper adopts the approach in [14,15] to estirttage3D motion, but for a
different purpose. A prior probabilistic model is built fronetscene flow estimated and
used in stereo estimation at tit¥el. In this case, the scene flow doesn't enforce the hard
constraint on the disparity maps at titel, but instead uses them as a soft constraint,
which has two advantages: first, the errors in previosgadity maps (tim¢) and scene
flow can be corrected and hence the error propagationbeareduced; second, the
temporal consistency constraint is effectively addetiedémporal disparity estimation.

The rest of this paper is organized as follows. In ee@i we describe the algorithms
in detail. Section 3 shows the experimental results imojudhe evaluations on
Middlebury datasets and a real world image sequencsedtion 5, we finally conclude
the paper with a summary of our algorithms and some commertie angirovements.

2 Algorithm Descriptions

To simplify the stereo matching and scene flow estonatve first rectify the two image
streams so that the stereo disparity is along the horizbrgetion in the images. The outline

of the presented algorithm is shown in Figure 1. In this warkfassuming that the disparity
maps(Df, DF) (in left and right viewshat timet are estimated, we then compute the scene
flow between timet and t+1, and use them to predict the disparity maps at tirde
(PE.1, PE1). The scene flow isllso used to compute the confidence maps that model the
strength oftemporal links These are further employed in the iterative stestination to
generate the disparity maps at tithi.

Disparity Estimate scene flo Predict disparity maps, Iterative
maps || betweertandt+1 [ —p (Ph1, PEY) »|  stereo
(D£, DY) Compute confidence maps estimation

A .
Ct=t+l
1
1

Figure 1. Diagram of the proposed stereo algorithm

We adopt a hybrid approach to generate the initial digpaaps for the first frame,
which includes two steps: first, we use the over-segmentdtésed stereo algorithm
similar to [11] to estimate the preliminary disparitypeaThen we add the constraints
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based on these disparity maps to the pixel-wise iteratiereo estimation. The reasons
are twofold: First, the over-segmentation based approacbes o be very robust and
insensitive to image noise and color bias between theateftright views. It is well
known that the difficulties and ambiguities causedéxjureless or occluded regions can
be handled well by segmenting the images. Second, over-segmentatiorot be correct
in cluttered scenes since it is only based on color. #agmentation artifacts around the
object border will directly affect the accuracy betdisparity maps. One solution is to
update the small segments during the iterative stertmat®n process [12]. In our
implementation, we adopt a more straightforward, yetotiffe way to improve on this
problem. Instead of updating the over-segmentation resugtsirst do stereo estimation
at the segment level and then use the estimated dispajig to guide the estimation at
the pixel level. We do this by incorporating the estimatisparity of each segment into
the stereo model as a soft constraint. It penalizedigparity difference between the
segment disparity and the pixel disparity within that segmaAt the pixel level, the
estimation can maintain the robustness of the segmeeatttzgsproach and at the same
time correct the segmentation errors using stereachmakeasurements. This is different
from some stereo methods which employ the plane or segommstraint as a soft
constraint [6], where initial disparities are first esied at pixel level and are then used
to fit disparity planes for every segment. If most @ ihitial disparities are wrong within
one segment, the fitting plane is not reliable or usefllough we incorporate the
segment constraint in a similar way, we don't rely on the diggdane fitting.

2.1 lterative Stereo Estimation

Disparity hypothesis
and confidence maps

Over-segmentation | Additional cost | Correlation volume
based ster¢

v

Segment-based

disparity map Stable Pixel mas

1 1
1 1
I 1
1 1
I 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
: Segment cost Data Tern |<—| Occlusion mas !
| y 1
I 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

¢ A
| Smoothness Ter |—>| Hierarchical BP |

v

| Disparity maps |—>| Consistency checl«l

_______________________________________________

Figure 2. Diagram of the iterative stereo algorithm

The iterative stereo algorithm comprises of severadutes as shown in Figure 2. In the
over-segmentation based stereo algorithm, we figgdyapean shift segmentation [9] to the
left and right images and split the large regions intalksegments. Then we compute the
data cost from the greatest percentage of pixelsréttiegment that match over a range of
possible offset differences [11]. We construct avia& Markov Random Fields model and
compute the segment disparities using graph cuts [7]aniimoothness cost of a truncated
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quadratic model. For the second step, we apply the pselitérative algorithm similar to
[5], where the occlusions are explicitly handled in a sgini;istereo match model with the
segment disparity maps encoded as a soft constraint.

We first compute the correlation volume [6] using theally adaptive support weight
method of Yoon and Kweon [2]. The stable pixel mask rsegated from the match cost
cube. The pixel is marked as stable if the best peahkeimiatch cost is distinct from the
second best peak. We also estimate the occluded pixel frmskthe disparity maps
estimated during the last iteration using the left-righhsistency check (the occlusion
mask is empty initially). Then we merge the correfatiolume and segment cost into the
final data term, using the adaptive weights based on thesenmtask images. The
additional temporal cost, when available, is also eszad into the data term with the
adaptive weights. The unstable or occluded pixels aenginore regularization from the
additional constraints (segment cost and temporal cost).

The smoothness cost is defined as a truncated lineaelraod is tuned based on
color edges because the depth edges are likely to deinwith color edges. The
smoothness cost will decrease for strong color edgesincrease for uniform regions.
This will help ensure that the disparity maps are consistehttiaé object borders.

Hierarchical loopy belief propagation [3] is employed to ireathe optimization of
the total energy. Hierarchical BP adopts a coardexostrategy: first performing BP at
the coarsest scale and then using the messages from the ctalestw mitialize the input
for the next scale. This strategy significantly speegbs the convergence. In our
implementation, we use 5 scales and 5 iterations for each scale

Once the optimization is done, we use the current sokitio update the occlusion
masks and the data cost. We then optimize again with thelat cost and this process
is stopped once the solutions converge.

2.2 Scene Flow Estimation

Scene flow describes the motion of each 3-D point betiveetime steps. We use the view-
dependent representation of the scene flow similargovork by Huguet [14]. The optical
flow and disparity maps are jointly estimated from the rectified image sequences. Let
Li(x,y,t) andl,(x,y,t) be the two stereo images at timéssuming that the disparity maps at
time t have been estimated, to predict the disparity mapslatthe scene flow field is
defined aqu,v,w) where(u,v) is the optic flow in the left view, and is the change in
disparity. Each element of the scene flow is the scalar funatiamed in the reference view,
i.e., frame reference df(x,y,t) Given the initial disparity map and the scene flowefach
pixel (x,y) in the reference view, we can find its correspondeiteal the other three
images.

The global energy functional is defined as a sum of datawhich makes use of the
color constancy assumption between the correspondenceshansinoothness term,
which enforces flow fields to be smooth.

E(U,V, W) = EData + aESmooth (1)

whereq is regularization parameter; the data cost considtzreé data terms from the
left and right optic flows and stereo at titre.:

EData = Efl + Efr + Est (2)

where each data term is defined over the image dafmamfollows:
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Ey = LMy G D W(F (X Uy + v, +D = (6, .1))edy ®)
£y = oM )T W d Furwy +vt+) -1 5Gord y 0 )y ()

E, = JQ m, (X, y)zsllP((l fx+d+u+wy+vit+) - 15(xX+u,y+vt +1))?)dxdy (®)
c=1

wheremy, my andmy; are the mask images of non-occluded pixels forojefic flow,
right optic flow and the stereo match at titmé. They are computed from image warping
techniques similar to the method described in [13]. Threer eblanneldR, G andB are
used in the data term araddenotes one of 3 color channe¥.is a robust function:
Y(x%) = Vx? + 2, wheree=0.001 to make the robust function differentiable. The robust
function helps to reduce the influence of the outliers on the sofutio

The smoothness term is defined to penalize the local variatighs fiow fields.

Exmoon= |, WAIOU I+ 11OV IF + 11O +y | 0dl |F)xdy (6)

where the same robust functighis applied to the sum of the gradient norms to help
preserve the discontinuities of the flows since the dismoities likely appear
simultaneously in the scene flow fields. Paramétadjusts the relative weight between
disparity flow and optic flow, ang scales initial disparity versus optic flow. Thougle th
disparity fieldd is known, we still add its gradient norm to help keepattvendary of the
scene flow image sharp.

According to calculus of variations, an extreme of therggnéunctionalE can be
achieved by solving its Euler-Lagrange equations:

S RIS +m WSS +mW (DI 1)) - adiviw, Ty =0 (7)
S Imp W (DI +m W (SIS +mW ()51 —19)] - adiv(wy Ty =0 ()

3T, ()N + MW ((15)D)1518] - aAdiv(W, D) =0 ©)

where the?'(x%) denotes the derivative &f with respect toé, andI, andg, mean

the gradients of the warped left imaigel. The termgy, andif, are defined similarly.
And

o= 1P (x+u,y+v,t +1) =1 °(X, y,t); (10)
1S =1°(x+d+u+w,y+v,t+1) - 15(x+d,y,t); (11)
o= 15 (x+d+u+w y+v,t+1) =S (x+u,y+v,t +1); (12)

In our implementation, by assuming th#t(x,y,t) =I¢(x +d,y,t), we get that
If, = I, andIf, = If,, and we can then simplify equations (7) and (8) by removing the
linearized third constraint in these equations.

To solve these non-linear equations, we adopt the straffeyyo nested fixed point
iteration loops as in [13]. In the outer iteration loofjrat order Taylor expansion is
applied to the Euler Lagrange equations, specificalth¢oexpressions,, I, andis,. In
each iteration, the second image is warped according tuthent estimated flow and an
increment of the flow vectors is estimated. In the integation loop, the nonlinear terms
¥ are further linearized and the resulting sparse lingstes1 of equations can now be
solved using common numerical methods, such as SORadtesaThe solution will then
be used to updat#.
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These fixed point iterations are combined with a cetodne strategy to better
approximate the global optimum of the energy. The stereageé pyramids are
constructed with a down sampling factor, and when the figeht iterations are
conducted at a given pyramid level, the solution is scaledipsaimpled to the next finer
level. This process is repeated until the full resolutsoreached. In our implementation,
we use 0.8 for the down sampling factor, and as in [14], 0.@5dd as the stopping
condition for the inner fixed point iterations and 0.01 for the dixed point iterations.

2.3 Disparity maps prediction

From the scene flow definitions, the predicted disparity maps caonyeuted as:

Pha(x +u,y +v) = DE(x,y) + w(x,y) (13)
PRi(x+u+d+w,y+v)=-DEx,y)—w(xy) (14)

where the superscript L(R) denotes left(right) viéwet DX’ (x,y) = DE(x,y) + w(x, y);
we warp the disparity mapt’ to the left and right views at tinte1 using Z buffering
techniques. In other words, if two or more pixels in theenirframe are warped to the
same pixel in the next frame, the largest disparity béllused as it represents the most
frontal 3D point and therefore should be visible.

The predicted disparity maps may have some mismatchemdtance, the errors in
disparity maps at timemay be propagated and the scene flow may be over-snioathe
object boundaries. To prevent error propagation, we comheconfidence image
together with the predicted disparity maps. The confidencepofeh is measured by the
color similarity between that pixel and its corresgences according to the scene flow
vector. Similar to the data term defined in scene flotivregion, we uséy,, I¢, andi§, as
the color similarity measures. The color differencessarmmed up and converted to the
weight image using an exponential function:

w = mﬂmﬁmstexp(_ I|Izz|I2+||I;zCZI|2+|I1azI|2) (15)
wherew denotes the confidence of the correspondences spebifilte scene flow
field, ando, is the normalization parameter for the color differefmet to 6.0 in the
experiments). In scene flow, the color differences in 3heolor channels are treated
separately, but here we use the Euclidean color distahgeis|the L2 norm of,, a 3-
dimensional vector corresponding to 3 color channels. Thialitismasks used in scene
flow estimation also appear here since we only want to pedpdlye disparity which can
be verified in all the four frames involved. The confideimage is then warped to the
left and right frames at tima-1 with the estimated scene flow vectors.
The prediction and confidence is then incorporated into theosteoeels for time+1
as a soft constraint. The temporal cost is definecetalize the differences between the
predicted disparity and the disparity to be estimated based on tlhidecmef

Etempural (D) = Zi wimin (ldl - Pil! Ttempural) (16)

where for each pixdl d; is the disparity to be estimatdd.and w; are the predicted
disparity and confidence respectively.mpora iS @ truncation threshold for temporal cost
(set to 10 in our experiments). Basically the confidence alsnthe contribution of the
temporal consistency term into the overall energystereo estimation. If the confidence
is too small, the prediction has little influence on dhieparity. The temporal cost is fed
into the iterative stereo estimation module as an iaddit cost and merged into the final
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data term as explained in Section 2.1.

3. Experimental Results

We first test the hybrid stereo algorithm on the Middigbstereo datasets [1] and the
results rank 8th overall in the evaluation as of April 20DBe overall performance is
much improved compared with the results in [11], and very diogbe results in [12]
where the over-segmentation and segment disparity are updattidety.

Datasets Non-occluded All Discontinuities
Tsukuba 1.0% 1.34, 5.464
Venus 0.28- 0.584 3.62,,
Teddy 6.6715 12.117 16.818
Cones 2.82 9.0045 7.444

Table 1. Evaluation of the hybrid stereo &l on the Middlebury datasets. The numbers are
the percentage of pixels whose absolute disparityr és greater than 1. The subscript of each
number is the rank of that score.

To evaluate the scene flow algorithm, we use these etatasd the above initial
disparity map. Each dataset consists of 8 views of#imee static scene. The images are
captured from equally-spaced viewpoints along the x-agi® fieft to right and are also
rectified. Similar to [14], we took images 2 and 6 of the¥g Teddy and Cones datasets
as the stereo pair at timgand images 4 and 8 as the stereo pair at tihe In this
special configuration, the optic flow part is strictiprizontal ¢=0), and the disparity
maps are the same=£0), but our algorithm doesn’t know anything about th€&eund
truth is given as the disparity from 2 to 6, and the optic flow listhe disparity.

In the evaluation, we set the smoothness paramet&@, A=2, y=0.5. We calculate
the root mean square (RMS) and the absolute angular &ééf) (on the optic flow and
disparity maps without occluded areas. They are all medsir pixels. Although the
initial disparity map is estimated outside of the sdéme algorithm, we still include it in
the comparison. The results are summarized in Table 2p&ech with Huguet's method
[14], we achieve much lower error rates for the ihitissparity map and this helps to
improve the accuracy of the scene flow fields.

Datase RMSd (Initial RMSw RMS (u,v) AAE (u,v)

disparity) (mean, standard deviation)
Venus 0.38 0.97 0.22 1.4¢ 032 | 0.31 (1.38, 0.76) (0.98, 0.91
Tedd)y 117 2.21 0.49 6.9t 101 | 1.2 (0.37,0.48) (0.51, 0.6€
Cone: 113 211 0.43 5.2¢ 099 | 1.11 (0.56, 0.74) (0.69, 0.77

Table 2. RMS and AAE errors in pixels on the Miduley datasets. We show the errors (the
number in bold) from the initial disparity map, teeene flow maps obtained with our approach,
and the results (the other number in each itermp frfuguet's result[14].

We further use the disparity maps and scene flow majsatstl above to predict the
disparity maps at timée+1l and to compute the confidence images. The predictiods a
confidence images are translated into the temporalacmsfed into the stereo models at
time t+1. In Figure 3, we show the intermediate results on thee€aataset. The
predicted disparity maps have some artifacts, for instathe bent thin structure and the
blurring edges. These artifacts can be fixed by our approach.
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The algorithm is also tested on a real world stereagersequence. The test sequence
we show here is challenging since first, the backgroundiousthind the girl contains
rich and repeated textures which cause problems in ogeresgation and stereo
estimation, and second, there are obvious color variabehgeen left and right views,
which makes it difficult to match the walls behind thenpa As shown in Figure 5, we
compare the disparity maps obtained by applying our hympioach to each stereo pair
independently, and the disparity maps from applying the same appuitache temporal
constraint. In this example, the temporal constraintshédpremove the artifacts in the
background walls (uniform region) and curtains (repeated textures)

Figure 3. Top row: from left to right are the iaitidisparity map, the predicted
disparity map, and the confidence image; Bottom: nemner-take-all disparity map
from LASW match cost, winner-take-all disparity miapm the data cost integrating
LASW metch cost and temporal cost, and the disparity raatisnet+1.

Figure 4. Top Row: 5 consecutive Frames (onlyJiftv); Middle Row: the disparity maps estimated
frame-independently using the hybrid stereo approBottom Row: the corresponding disparity
maps estimated with temporal constraints.

4. Conclusions

In this paper, we proposed a method to estimate tharitispnaps for a stereo image
sequence. It follows the principle of a hierarchical apph by unifying the over-
segmentation based stereo model and a pixel based sterelh witdh can achieve a
good performance on a single pair of stereo images. drartre, we use the scene flow,
which captures the dense 3D motion in the scene frgiven viewpoint, to model the
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temporal consistency of disparity maps. The scene iBdvuilt into the stereo estimation
for the next frame as a soft constraint, which help solve stereo ambiguity from the
temporal domain, while at the same time reducing the erroagation in disparity maps.
Experiments on real world data show that our temporal himgdean indeed improve the
temporal consistency in the disparity maps.

As for the limitations, we observed that the error propagatialisparity maps cannot
be avoided always. For instance, some errors in disparéys could survive in the
prediction and confidence evaluation steps, and then couldopagated to next frames,
such as the errors in uniform regions and repeated textBegerally, our approach can
only achieve the suboptimal solution compared to tiggds optimization problem of
estimating disparity maps over a whole sequence (whergldbal optimal solution is
almost impossible for a long sequence) and the initspatity map has some influence
on the later disparity maps. In future work, we expect to iodk a more extensive MRF
framework that includes temporal and stereo constraintapfiyoximate the optimal
solution better.
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