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Abstract

Point-to-point matching is a crucial stage of 3D shape analysis. It is usually solved
by using descriptors that summarize the most characteristic and discriminative properties
of each point. Combining local and global context information in the point descriptor is
a promising approach.

We propose a new approach based on what we call semantic shape context to com-
bine effectively local descriptors and global context information by exploiting the Bag of
Words (BoW) paradigm for the representation of a single 3D point. Several local point
descriptors are collected and quantized from the training set, by defining the visual vo-
cabulary composed by a fixed number of visual words. Each point is then represented by
a set of BoWs which encode the inter-relationship with all the other points of the object
(i.e., the context).

Experiments were carried out on several 3D models. The proposed approach makes
fully automatic 3D registration of partial views possible, and generally outperforms state-
of-the-art methods in terms of robustness and accuracy.

1 Introduction
Estimating rigid transformations that align corresponding points of partial 3D views is a
critical issue for various tasks in computer vision (e.g., object recognition, object tracking
and 3D model reconstruction). The ICP algorithm [2] is the gold standard for pairwise view
alignment, but it requires a sufficient overlap among the views and a coarse pre-registration
to avoid getting stuck into a local minimum. In particular, according to the taxonomy pro-
posed in [8], when an initial estimate is unknown and more than two views are involved, the
problem is called multiview surface matching. Three main sub-problems need to be solved
[8]: (i) determining which views overlap, (ii) determining the relative pose between each
pair of overlapping views, and (iii) determining the absolute pose of the views. Many works
address these issues. Focusing on (i) and (ii), two main rough categories of methods have
been introduced: local methods [9, 13, 14], which are based on point-to-point correspon-
dences, estimated based on a point signature describing local surface properties, and global
methods [10, 16] which estimate directly the matching of the whole views by comparing
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global surface characteristics. Combining local and global information is a promising ap-
proach, but only few methods use this strategy, to the best of our knowledge (see [12], for an
extensive overview of 3D shape matching methods). An interesting and effective approach
has been proposed in [7], which is an extension of the so called shape context [1] to the 3D
domain. Shape context encodes the distribution over relative positions of a fixed point with
all the other points of the shape. In this fashion, it summarizes the global shape in a rich local
descriptor [1]. Besides, other approaches have been proposed [7, 9, 13, 14]. In the seminal
work [9], the Spin Images were introduced as the 3D histogram of distances of neighbouring
points from the normal vector and the tangent plane. In [13] an automatic method for cor-
respondence establishment is proposed, by converting the views into multidimensional table
representations, namely tensors. In [14] a geometric scale-space analysis of 3D models has
been proposed from which a scale-dependent local shape descriptor is derived.

In this paper, we improve the basic idea of the shape context by combining local descrip-
tors with the Bag-of Words (BoW) paradigm. We focus on the problem of multiview surface
matching by addressing the early two above-described sub-problems. The proposed point
description and matching approach is based on the following steps:

1. Local points description. Several local point descriptors are computed in order to
capture the local shape variation in the point neighborhood [9, 15].

2. Visual vocabulary construction. The set of point descriptors collected from all the
views of the same model are properly clustered in order to obtain a fixed number of
3D visual words (i.e., the set of cluster centroids) [4].

3. Context definition. Each local descriptor is assigned to a visual word, and a BoW
representation is defined by counting the number of points assigned to each word.
In particular, for a fixed point its context is defined as the set of BoWs computed on
several regions which are defined by concentric shells centered on the fixed point itself.

4. Point matching. The matching between two points is computed by comparing their
respective signatures and by taking into account the different kinds of descriptors.
Both the local and contextual contributions are considered.

The main idea of this approach consists in the fact that the proposed context encodes not
only the spatial relationship between points, but also their ‘class’ w.r.t. each local descriptor
(i.e., points associated to the same cluster belong to the same class). We thus call this new
representation Semantic Shape Context (SSC) (we use the term "semantic" to emphasize the
fact that we learn the local shape of the point), where here the semantic is inferred by the
point classification. It is worth noting that the choice of local point descriptors is not the
focus of this work, since in principle any set of local descriptors can be used and cast in the
proposed context. The effectiveness of the SSC is shown by proposing a multiview surface
matching framework which implements a fully automatic model registration pipeline.

Roadmap. This paper is organized as follows. Section 2 introduces the idea of SSC by de-
scribing the proposed approach to organize several descriptors into a compact point context.
Section 3 gives details on the implemented multiview surface matching strategy. Section 4
shows exhaustive results and finally, conclusions are drawn in Section 5.
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2 Point description and matching
The proposed approach is based on the four main components described in the introduction.
Note that few and significant points are selected from each partial 3D view using the method
proposed in [3], which extends the approach for salient point detection to the 3D domain. We
thus process only a reduced number of salient points. Note that few and significant points are
selected from each partial 3D view using the method proposed in [3], which exploits saliency
measurements on meshes according to perceptual principles based on the extension of scale
theory onto the 3D domain. In practice the salience measures how much a surface point
is displaced after Gaussian filtering at different scales, and only points with local maximal
saliency at different scales are detected. We thus process only a reduced number of salient
points.

2.1 Local point description
Local descriptors aim at capturing local geometric properties in the neighborhood of a given
point. In general, robustness against noise and invariance against rigid transformations are
sought characteristics to robustify the matching. In this paper, starting from a set of ori-
ented points (i.e., point with normal [15]), we focus on the following geometric measures to
compute the descriptors for each feature point:

• Shape Index si [15]. The Shape Index is defined as:

si =− 2
π

arctan
(

k1 + k2

k1− k2

)
k1 > k2

where k1,k2 are the principal curvatures of a generic vertex. The Shape Index varies
in [−1,1] and provides a local categorization of the shape into primitive forms such as
spherical cap and cup, rut, ridge, trough, or saddle [15].

• Beta Value bv. The Beta Value of vertex p is represented by the projection of the
nearby vertex v to the normal~np at p. In practice it is the distance between the surface
point v and the plane identified by~np.

Finally, those two measurements are collected and accumulated separately onto concen-
tric shells, centered on the feature point. This gives three-dimensional histograms Lsi(i, j)
and Lbv(i, j)1, where i ∈ [1, ..,N], j ∈ [1, ..,M] are the indices which identify the quantized
geometric measures and the distance from the salient point, respectively.

2.2 Visual vocabulary construction
The proposed approach for learning point context is inspired from the BoW framework for
textual document classification and retrieval. To this aim, a text is represented as an un-
ordered collection of words, disregarding grammar and even word order. The extension of
BoW to visual data requires one to build a visual vocabulary, i.e., a set of the visual analog
of words. As for the 2D domain [4], the visual words are obtained by clustering local point
descriptors (i.e., the visual words are the cluster centroids). In practice, the clustering de-
fines a vector quantization of the whole point descriptor space, composed of all the feature

1In practice Lbv(i, j) is the Spin Image [9].
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Figure 1: Selected points (left), the neighborhood of each point (center), and the point clas-
sification (right).

points extracted from all the views (i.e., the training set). In order to obtain the clustering,
the K-means algorithm is employed [5]. The number of visual words is defined by fixing
the parameter K. In this fashion, each point can be easily classified by assigning to it the
visual word associated to the closest cluster centroid. Note that in our case, as in [4], the
point classification is carried out by an unsupervised learning approach [5], but that more
sophisticated classification techniques could be used. Figure 1 shows the selected points, the
neighborhood of each point, and the point classification on a toy example. Similar points are
assigned to the same visual word.

2.3 Context definition and global point description
Given one salient point, several sub-regions are defined by concentric shells, as for the Shape
Context2 [1]. Therefore, a BoW representation is defined for each sub-region by counting
the number of points assigned to each word. Finally, the set of BoWs composes the SSC.
Figure 2 shows an example of this phase.

The SSC is computed for each kind of descriptor by defining SSCsi(u,v) and SSCbv(u,v),
where u ∈ [1, ..,R], v ∈ [1, ..,K] are the indices which identify the distance from the salient
point and visual word, respectively. Note that in this case the region of influence is extended
to the whole shape, by summarizing the global shape from the ‘point of view’ of the salient
point.

Finally, the global point descriptor is defined by a vector Gpd = [Lsi,Lbv,SSCsi,SSCbv]
concatening the contribution of both, local descriptors and SSCs.

2.4 Point matching
Point matching between two points P1 and P2 is carried out by comparing their respective
global point descriptors G1

pd and G2
pd using standard metric for histograms (i.e., the χ2 dis-

tance). A composite error function is defined to take into account the multiple components
of Gpd . In particular the error of the local description part is defined as:

Elh(L1
h,L

2
h) =

N

∑
i=1

N

∑
j=1

(L1
h(i, j),L2

h(i, j))2

(L1
h(i, j)+L2

h(i, j))
. (1)

where h ∈ {si,bv}. Similarly, the error for the SSC is computed as:

Essch(SSC1
h ,SSC2

h) =
R

∑
u=1

K

∑
v=1

ω(u) ·
(SSC1

h(u,v),SSC2
h(u,v))2

(SSC1
h(u,v)+SSC2

h(u,v))
. (2)

2Here the space is not split in sectors as in [1, 7] due to the instability of defining a full local reference system.
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Figure 2: Context definition for a given point (colored in blue). Three sub-regions are iden-
tified by three shells. The BoW representation is computed for each shell. The set of three
BoWs forms the SSC.

again with h ∈ {si,bv}. Note that here a new weight function ω(·) has been introduced
which is related to the sub-regions identified by u. The idea is to increase the influence of
close regions and vice-versa. This approach is especially useful in the context of partial view
matching since furthest points are likely to be occluded. More details on ω(·) are given in
Section 3.1.

Finally, the final error of point-to-point matching is given by

E = αlsiElsi +αlbvElbv +αsscsiEsscsi +αsscbvEsscbv. (3)

where the α are the contribution weights. We have introduced such weights because in
principle we should need to tune them in order to balance properly the contribution of each
term and possibly normalize the effect of different numerical ranges of the various error
components. In practice we find good results with equal weights:

αlsi = αlbv = αsscsi = αsscbv = 0.25 (4)

Note that, as we already mentioned before, both the local and contextual contributions are
considered.
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3 Multiview surface matching

In this section we test the effectiveness of the proposed point descriptor to address the prob-
lem of multiview surface matching. As customary [8], registration is carried out pairwise
first, and then a simple strategy for treating multiple views is implemented.

3.1 Pairwise registration

We propose our point matching strategy to solve robustly the issue of pairwise view pre-
alignment. Given a pair of 3D views, salient-point-correspondence estimation is carried out
by comparing the descriptors of each salient point of the first view, with all the salient points
of the second view. In this fashion a graph of point-to-point similarities is built and the
correspondences are estimated by a bipartite graph matching algorithm [5]. Note that in
this case, to compute the total error between two points (i.e., equation. (3)), the weighting
function ω(·) of equation. (2) is defined as a Gaussian function. In order to estimate the
scale, we choose the scale value σbest which minimizes the pairwise registration error3. To
this aim we implement a greedy approach evaluating a range of values σs ∈ I, which are fixed
in order to allow the SSC to be influenced from the whole view to a small neighborhood.

In order to remove possible wrong correspondences, the standard RANSAC algorithm
is implemented. It imposes the rigid constraint among the two views [6]. The output of
RANSAC provides the final salient-point-correspondences which are used to estimate the
pre-alignment.

3.2 Treating multiple views

The extension of the registration to multiple views requires the estimation of the pairwise
overlap to determine the pairs of views that can be registered [8]. To this aim we build the
registration matrix Mx,y which stores the registration error between each pair of views Vx
and Vy after the pre-alignment. Moreover, for each pairwise registration we store also the
estimation of best scale σ

x,y
best . In fact, the underlying idea is that the magnitude of σ

x,y
best can

be used as an estimate of the overlap between Vx and Vy (i.e., the larger σ
x,y
best the larger the

overlap between Vx and Vy). Therefore, we propose a strategy for estimating the best pairs
of views to be registered. We binarize the matrix Mx,y by using a threshold ≈ 0.05 from the
mean registration error. Then we estimate the best path which connects all the views and
maximize the sum of values σ

x,y
best (i.e., similar to [14] by maximum spanning tree). Finally,

the registrations of the selected pairs are refined by ICP [2] and all the views are put to the
global reference system by simply concatenating subsequent pairwise rigid transformations.

4 Results

We performed our experiments on range data obtained from The Stuttgart Range Image
Database4 by using range images of different types. We used several models with various
features, planar surfaces, symmetries and curvatures. In our experiments, the scale of our

3The registration error is computed by the summing the residual errors of all corresponding points between the
two views after the pre-alignment, where the correspondences are computed by closest point.

4University of Stuttgart, http://range.informatik.uni-stuttgart.de/htdocs/html/
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descriptor was automatically adjusted, σs ∈ {0.1, 0.6, 1.1, 1.6, . . . ,4.6} and the other pa-
rameters kept constant. The experiments have shown, in contrast to the Spin Image and 3D
Shape Context descriptors, that the setting for all but the scale parameter does not affect the
performance of our descriptor . Therefore, setting only one parameter is easily done in prac-
tice. The most important parameter, the number of visual word was set to K = 50, which
is an estimate of the number of salient points per view. The proposed descriptor was tested
with two geometric measures, (1) shape index and (2) beta value. The four components
were weighted to contribute equally (i.e., equation. (4)).

The descriptor was evaluated according to the alignment error. We define it as the resid-
ual error obtained after applying RANSAC-based and ICP-based alignment. Our test pro-
ceeds by computing the registration matrix Mx,y that contains the alignment error for each
pair of views among given sets of range images (in our case, we used 16 views of each
model). We select the best σs denoted σbest by inspecting the RANSAC alignment error. We
record the corresponding RANSAC and ICP alignment errors as well as the associated trans-
formation. We find the best path of a weighted graph (i.e., the registration matrix Mx,y) by
using the maximum spanning tree algorithm. Figure 3 illustrates the results of our descriptor
with 16 views of 4 models (Bunny, Bull, Dino and Dragon). It is easy to notice the consider-
able difference in the approximate pairwise registration (i.e., RANSAC-based) obtained with
our descriptor compared to those obtained by spin image and 3D shape context. Moreover,
Figure 3 shows that spin image and 3D shape context failed in many cases to give an accu-
rate enough pre-alignment (i.e., cases where the pre-alignment error is higher than ≈ 0.2).
Our results are more accurate and they can be directly refined by any ICP-based registra-
tion algorithm. These results justify our claim that our descriptor contain rich discriminative
information. That is the main reason for the lack of accuracy of the other descriptors.

In order to demonstrate the robustness of our descriptor according to the overlap area,
we computed the best scale σbest for each pairwise alignment. The corresponding alignment
error is reported. We use ‘large’,‘medium’, or ‘small’ to define the amount of overlap which
is proportionally estimated from σbest (i.e., the larger σbest the larger the overlap). The com-
puted pre-alignment error for each pairwise view is compared with the corresponding spin
image and also with 3D shape context values. Table 1 summarizes the results. For each
model we selected 4 different pairwise alignments according to the σbest value (i.e., large,
medium, or small overlap). Note that the spin image and 3D shape context descriptors give
more accurate alignments for large overlap. In contrast, for the small to medium overlaps,
our descriptor seems to be significantly more accurate. The main reason of failure for the
other approaches, is that they are based on a single source of information. Therefore, any
small local surface deformation can produce a significant error on the resulting descriptor.
This means that the error may come from the type of used information and may not be
related to the descriptor representation (i.e., histogram-like). In fact, there is no preferred
information to build a descriptor that provides a high matching rate. Therefore, combining
local descriptors with global context can resolve the ambiguities that may appear in each
other (e.g., locally where a view has similar surface elements). By using multiple sources
of information (e.g., here we used shape index and beta value), we can compensate for the
apparent or intrinsic defect of one component (e.g., beta value) by retrieving information
from another: local descriptor or global context. Another strong point in our approach is
related to the relaxed constraints on the invariance rotation for the histogram implementa-
tion. It means that we can use a simplified histogram-like implementation. Therefore, we
avoid a high loss of information [11] (i.e., going from a 3D to a 2D representation) and gain
more in robustness. The mentioned arguments may explain the superior performance of our
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(a) Bunny (b) Bull

(c) Dino (d) Dragon

Figure 3: Comparison of pairwise alignment errors obtained by our descriptor with those
obtained with spin image and 3D shape context. Note: the number of bins of spin image is
10× 10 whereas the number of bins of 3D shape context is 10× 10× 10. For each model:
Left: RANSAC alignment error (i.e., pre-alignment error), Right: ICP alignment error. The
x axis shows the pairwise alignment with a reference view ordered from 1 to 15 (i.e., we used
16 views of each model).

approach in the case of small overlap illustrated in Table 1.

Finally, we conducted an automatic multiple views registration. We tested a collection of
10 models, consisting of 16 views of each model. Note that those views are chosen in such a
way that ICP would diverge by requiring a robust pre-aligning strategy. Figure 4 shows the
results of 4 models. Note that the registered models (second and third columns of each row)
were further refined with an ICP-based algorithm. The registered models in the second and
third columns of each row do not have noticeable defects. This means that the approximate
alignment (i.e., with the RANSAC-based algorithm) obtained is very accurate and can be
directly and successfully refined with an ICP-based algorithm5.

5An ICP-based algorithm requires a sufficient overlap among the views and a coarse pre-registration to avoid
getting stuck into a local minimum.
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(a) Bunny
RANSAC alignment error

Pairwise alignment σbest overlap Our Descriptor Spin Image 3D Shape Context

08← 07 3.1 large 0.0310 0.0283 0.0388
14← 12 1.6 medium 0.0292 0.0583 0.4479
03← 02 0.6 small 0.0301 0.0637 0.4248
09← 10 4.6 large 0.0284 0.0306 0.0304

(b) Bull
RANSAC alignment error

Pairwise alignment σbest overlap Our Descriptor Spin Image 3D Shape Context

07← 08 0.1 small 0.0256 0.3168 0.3489
11← 12 4.1 large 0.0260 0.0329 0.0333
16← 02 1.6 medium 0.0267 0.0323 0.0299
09← 10 3.6 large 0.0256 0.0348 0.0256

(c) Dino
RANSAC alignment error

Pairwise alignment σbest overlap Our Descriptor Spin Image 3D Shape Context

16← 02 0.1 small 0.0269 0.0727 0.2568
03← 04 3.6 large 0.0271 0.0260 0.0260
02← 03 1.6 medium 0.0275 0.0301 0.2847
07← 08 4.6 large 0.0261 0.0276 0.0277

(d) Dragon
RANSAC alignment error

Pairwise alignment σbest overlap Our Descriptor Spin Image 3D Shape Context

04← 05 4.1 large 0.0263 0.0263 0.0263
13← 14 2.1 medium 0.0258 0.2252 0.2869
14← 15 1.1 small 0.0246 0.3149 0.0247
03← 04 2.6 medium 0.0258 0.0846 0.0258

Table 1: The approximate pairwise alignment.

5 Conclusion
In this paper, we introduced a new approach to computing 3D point descriptors. This is
based on combining local information with the corresponding shape context information by
exploiting the Bag of Words (BoW) paradigm. We derived a novel descriptor robust to the
overlap and extremely discriminative. Our Semantic Shape Context descriptor is effective
yet simple to implement. It resolves the problem of pre-alignemnt (i.e., approximate align-
ment by postapplication of a RANSAC-based method) which becomes accurate enough to
be directly refined by an ICP-based registration method. We also introduced an approach
to automatically estimate the overlap area. We used the scale for determining which views
overlap. Based on the best scale, we find the best pairs of views to be registered to each
other for fully automatic registration. Our experiments demonstrated the efficiency of our
descriptor for the case of a small overlap. In the future, we will investigate our approach in
the 2D domain.
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