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Abstract

Shape from focus (SFF) which uses a sequence of space-variantly defocused frames
works under the constraint that there is ‘no magnification’ in the stack. In the presence of
sensor damage and/or occlusions, there will be missing data in the observations and SFF
cannot recover structure in those regions. In many applications, the capability of filling-
in missing data is of critical importance. In this paper, we investigate the effect of motion
parallax in SFF and demonstrate the interesting possibility of how it can be judiciously
used to jointly inpaint image and depth profiles. When there is relative motion between
the 3D specimen and the camera, by virtue of the inherent pixel motion in each of the
frames, it is possible to obtain a focused image and depth map of the scene despite
missing regions in the observations.

1 Introduction
Shape from focus (SFF) [24] is a passive ranging technique wherein a stack of images are
captured using a real-aperture camera. The technique is based upon measuring the degree of
focus locally in a stack of space-variantly blurred observations to arrive at the structure of the
3D scene. It makes the critical assumption of no pixel motion to be able to apply a window
and compute the focus measure profile for every pixel through the stack. The relative motion
between the scene and the optical system is limited to be small so as to avoid magnification
effects among the frames. Researchers acknowledge the fact that magnification will cause
errors in depth estimation in methods that use the blur cue and have devised methods to avoid
it.

In the related area of depth from defocus (DFD), telecentricity on the image side has been
proposed [33] to avoid any magnification effects. Object side telecentricity has been known
in the literature [18] but in order to achieve this effect the aperture of telecentric lenses needs
to be as large as the object to be viewed. This requires large, heavy and expensive lenses.

Existing works assume that there are no missing data in the frames. In real-world sit-
uations, the observations captured may be incomplete due to faulty imaging sensor or due
to occlusions. Techniques such as SFF and DFD cannot recover the estimates of structure
in regions where the image data is missing. We observe that, in such a scenario, motion
parallax provides a vital cue for filling-in missing data. This is motivated by the fact that
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missing/occluded portions of an object reappear in different observations when there are
magnification effects. Here, we use the term magnification or scaling to loosely refer to
structure-dependent pixel motion. In the proposed work, instead of shunning magnification,
we exploit the pixel motion cue in the observations to expand the scope of SFF to inpaint the
depth profile and the focused image of the underlying specimen despite missing information
in the captured observations.

Several algorithms have been proposed for filling-up missing areas in digital images [16],
[22], [2]. Image inpainting assumes that the area to be inpainted is known a priori and uses
information in the neighbourhood to recover plausible details in the damaged regions. This
technique has several applications which include restoration of scanned old photographs,
astronomical images, removal of text/subtitles in images as well as in videos, and also for
disocclusion/removal of objects in the frames. In [2], partial differential equations are used
to propagate the boundaries in the direction of the isophotes. The algorithm works by pop-
ulating both the gradient-direction (geometry) and the grayscale intensities (photometry)
inside the inpainting region. Extending the techniques from 2D to 3D data, this idea has
also been applied successfully for hole-filling during surface reconstruction [31]. The uni-
fication of structure and texture inpainting has been used by [1] where they split the input
image into two different images, one capturing the basic image structure and the other cap-
turing the texture information. The ideas of texture synthesis and image inpainting have also
been combined together elegantly in [9] to fill large gaps. A similar formulation has been
used for inpainting in video sequences as well [26, 27]. The work in [7] exploits geometric
image models such as the bounded variation image model in a Bayesian framework. This
approach is improved in [10] where the Mumford-Shah-Euler image model is proposed as
the prior. Recently, in [14] it has been proposed to compute the 3D shape by controlling
focus and aperture of a single camera especially for scenes that are highly geometrically
complex and have fine texture. However, this method uses sophisticated SLR cameras and
captures hundreds of high-resolution images to derive the structure. Its performance suffers
for regions of low texture in the scene and the authors of [14] have resorted to inpainting
using the technique in [2]. Importantly, in their work [14] observations are not affected by
parallax as both the camera and the scene are stationary. Several works have been proposed
recently in the DFD framework [11, 13, 17]. However, none of these works use frames with
missing data/occlusions and affected by motion parallax. Occlusions have been handled for
estimating depth information in [4, 12, 23] but a major difference between our approach and
these works is that they consider only equifocal planes. The work in [15] does not address
occlusion removal per se but only accounts for occlusion effects at defocused boundaries.
We remark that in all the above works the observations are not affected by parallax and their
formulations do not account for it.

In a recent paper [25], joint super-resolution of video and inpainting has been demon-
strated. The inverse problem is solved using a total variation based regularization approach
thereby tackling the inpainting problem also. In another recent work [32], joint depth com-
pletion and image inpainting has been attempted. The authors have shown that it is possible
to handle occlusions in a stereo setup by inpainting both the depth and the texture. The
works in [25, 32] are the closest in comparison to our approach. However, there are several
differences. The work in [25] is about super-resolution and inpainting of image data but
without any occlusions. Note that the authors of [25] do not reconstruct the depth map of the
scene. The work in [32], is based on stereo and requires focused images. Our work clearly
supersedes that of [25] and [32].

In the literature, image/video inpainting has primarily been attempted using focused im-
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Figure 1: (a) Working principle of SFF. (b) Schematic showing mechanism of structure-
dependent pixel motion in SFF.

ages without any magnification or parallax. The method proposed in this paper simultane-
ously reconstructs the inpainted depth map and the focused image from scaled and space-
variantly blurred images. In this work, the formation of observations containing missing
regions is depicted using an appropriate degradation model. A Bayesian approach is adopted
in which the inpainted depth profile and the focused image are modeled as separate Gauss-
Markov random fields (MRFs). Their maximum a posteriori (MAP) estimates are obtained
by minimizing a suitably derived objective function.

In section 2, we motivate the need for inpainting in SFF. Pixel motion due to parallax
effect is discussed in section 3. The degradation model for missing observations is explained
in section 4. The proposed method for joint image and depth inpainting is given in section 5.
Experimental results are described in section 6. Concluding remarks are presented in section
7.

2 Inpainting in SFF
The basic principle of SFF is depicted in Fig. 1 (a). A real-aperture camera images an object
which is moved along the optical axis in finite fixed steps of ∆d. Due to the finite depth-of-
field of the camera and the 3D nature of the underlying specimen, the frames in the stack are
space-variantly blurred. Initially, the object is placed on the ‘reference plane’ at a distance
dr from the ‘focused plane’ and moved upwards such that at every step a space-variantly
blurred image is captured. As the point (k, l) approaches the ‘focused plane’ it gradually
begins to get focused. When the distance between the reference plane and the translating
stage is d = m∆d = d(k, l), the point (k, l) is on the ‘focused plane’ (at a distance of wd from
the lens plane) and is in perfect focus (neglecting diffraction effects and aberrations) since it
satisfies the lens law. The fundamental idea behind the SFF technique is to estimate for every
point the position of best focus, d(k, l). The variable d = d(k, l) for all the points (k, l) on the
3D specimen characterizes its shape. To detect the position of best focus for a point on the
3D object a focus measure operator is used to measure the quality of image focus in a local
region. Specifically, the sum-modified Laplacian (SML) operator [24] is used to compute a
focus measure profile for each pixel in the frame.

The estimate of the shape of the object is obtained by Gaussian interpolation. Note that
in the above formulation it is assumed that the pixel locations do not change between frames.



4 SAHAY, RAJAGOPALAN: INPAINTING IN SHAPE FROM FOCUS

This is crucial since the window used for computing the SML is centered around the same
point in all the frames. In real-world situations, data in portions of the observations may be
missing due to several factors including damage to the CCD sensor or occlusions. Since, the
SFF analysis is local and depth estimates for a particular point are computed using data in
the observations in the immediate neighbourhood of that pixel, this technique cannot recover
structure in missing regions. Interestingly, we show that when there is magnification in the
stack, structure-dependent pixel motion can be tapped to perform inpainting of both the depth
profile as well as the focused image of the 3D specimen.

3 Motion parallax in the stack
When the relative motion between scene and camera is significant, there will be magnifica-
tion (due to motion parallax) in the stack, such that the image features shift spatially from
frame to frame. To explain the mechanism of this structure-dependent pixel motion, let us
assume that the focused image and the shape of the 3D specimen are known.

Let the 3D specimen move relative to the camera along the axial direction as a sequence
of frames is captured. Initially, we consider a pinhole camera and describe how scaled images
are formed. As shown in Fig. 1 (b), we consider a specific point on the specimen which is
moved relative to the pinhole camera. A point on the 3D object with world coordinates
P(XP,Y P,ZP) moves to Q(XQ,Y Q,ZQ) along the Z-axis by a distance of m∆d and away
from the pinhole denoted by O. The distances of the points P and Q from the pinhole are
ZP and ZQ, respectively. The point P is imaged at p on the image plane and has coordinates
(x,y). Let this image be the reference plane. When the 3D object is moved away from the
pinhole by an amount m∆d, the point Q is imaged at q with coordinates (x′,y′) on the image
plane. The corresponding image is the mth frame.

Assuming that the size of the images is M×M, according to basic perspective projection
equations

x =
vXP

ZP , x′ =
vXQ

ZQ and y =
vY P

ZP , y′ =
vY Q

ZQ (1)

It must be noted that the motion of the object relative to the pinhole is only along the Z-
axis since the 3D specimen is translated away from or towards the camera along the optical
axis. Hence, for the SFF scenario, we have XP = XQ, Y P = Y Q and ZQ = ZP + m∆d =
wd +d +m∆d, where v is the distance between the pinhole and the image plane, and −M

2 ≤
x′,y′ ≤ M

2 . Thus, it can be shown that

x′ =
x(wd +d)

(wd +d)+m∆d
, y′ =

y(wd +d)
(wd +d)+m∆d

(2)

Note that the pixel motion is a function of d, the 3D structure of the scene. We will exploit
this cue for inpainting.

4 Degradation model
Consider N frames, {ym(i, j)}, m = 0,1, . . . ,N −1, each of size M×M from the stack. As-
sume that these are derived from a single focused image {x(i, j)} of the 3D specimen. The
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scaled and defocused frames can be related to the focused image by the degradation model

yvis
m = Om[Hm(d)Wm(d)x+nm] m = 0, . . . ,N−1 (3)

where yvis
m is the lexicographically arranged vector of size M2 × 1 derived from the visible

regions in the mth defocused and scaled frame, Wm is the matrix describing the motion of
the pixels in the mth frame, Hm is the blurring matrix for the mth frame, nm is the M2 × 1
Gaussian noise vector in the mth observation and Om is the operator which removes the
missing/damaged regions and crops out the visible portions of the observations. Note that
for both the cases of sensor damage or occlusions (due to a static occluder), the cropping
operator is unchanged for different frames of the stack, i.e., Om = O. Hence, the spatial
locations of the inpainting region remain the same in all the frames.

Note the interesting relationship between the shape of the object, pixel-motion and space-
variant defocusing in the frames. The degree of space-variant defocus blur induced at each
point in the image of a 3D scene is dependent upon the depth of the object from the lens
plane. Also, the pixel motion is a function of the 3D structure of the object. In fact, the
twin cues of defocus and motion parallax are intertwined with the 3D structure and must be
judiciously exploited.

In the previous section, we have elucidated the motion parallax effect as modeled by
Wm(d) in (3). Next, we describe the space-variant blurring mechanism as specified by
Hm(d) in (3). In its most general form, the image formation process (as described by (3))
is quite difficult to comprehend and some simplifying assumptions must be made to gain a
handle over the problem.

Towards this end, we assume a parametric model for the point spread function (PSF)
of the camera. The PSF of a camera defines its response to a point light source. Due to
diffraction and lens aberrations, the PSF is best described by a circularly symmetric 2D
Gaussian function [28] with standard deviation σ = ρrb where ρ is a camera constant and
rb is the blur circle radius. There exist several works that have validated this approximation
[8], [5] and hence, we too are motivated to use this model. Since the blur parameter σ is a
function of depth, the blurring induced is space-variant.

When the stage is moved upwards in steps of ∆d (see Fig. 1), for the mth frame we can
express the blur parameter for a 3D point whose image pixel coordinates are (k, l) as

σm(k, l) = ρRv
(

1
wd

− 1
wd −m∆d +d(k, l)

)
(4)

where 1
wd

= 1
f −

1
v , f is the focal length, R is radius of aperture of the lens and v is the

distance between the lens and the image plane.
Since the object is moving upwards as shown in Fig. 1, we have a negative sign for the

term m∆d in (4). Here, d(k, l) is the distance by which the stage must be moved from the
reference plane to bring point (k, l) into focus.

If the separation between the stage and the reference plane is such that d = m∆d =
d(k, l), then this point satisfies lens law and will appear in perfect focus. Note that under
this condition, the blur parameter becomes zero, as expected (assuming the effects of optical
aberrations to be negligible). We can establish a relationship between the blur parameter at
a point in the reference frame with the blur parameter at the same point in the mth frame of
the stack as

σm(k, l) = σ0(k, l)+
ρRv

wd +d(k, l)
− ρRv

wd +d(k, l)−m∆d
(5)
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The product ρRv can be found using an appropriate calibration procedure and it remains
constant during the entire image capturing process

5 Proposed framework for inpainting/disocclusion
In the previous section, we described the interaction of space-variant blurring and motion
parallax in the frames when there is significant relative motion between the 3D specimen
and the real-aperture camera. The problem that we attempt to solve is the inverse: Given a
stack of scaled and defocused observations wherein there are regions of missing data due to
possible occlusions in the scene or due to faulty camera sensor, how do we simultaneously
inpaint the depth profile and the focused image of the object?

We propose to inpaint both the depth profile as well as the focused image of the object
within a unified framework. Note that for the problem considered in this work, the spatial
locations of the missing regions do not change from frame to frame in the stack. It is probable
that whatever region of the 3D specimen was occluded/missing in one observation of the
stack will come into view in another frame since there is magnification in the stack.

Simultaneous reconstruction of the depth profile d and the focused image x is an ill-posed
inverse problem and hence, the solution has to be regularized using a priori constraints. Real-
world objects usually have depth profiles which are locally smooth. The same argument
holds good for the focused image also. Markov random fields (MRFs) have the capability
to model spatial dependencies so as to incorporate prior information [21]. We model the
structure and the focused image of the 3D specimen using separate Gauss-Markov random
fields (GMRF) with a first-order neighbourhood. The Hammerseley-Clifford theorem [3]
provides the all-important equivalence between Gibbs random field and MRF, enabling the
specification of the prior joint pdf for the depth map and the focused image. For details on
MRF, see [21].

We seek to solve for the MAP estimate of d and x. Let us consider a set of p frames
chosen from the stack of N observations. Assuming the noise process n′ms to be independent,
the MAP estimates of d and x can be obtained by minimizing the posterior energy function

U p(d,x) = ∑
m∈O

‖yvis
m −Om[Hm(d)Wm(d)x]‖2

2σ2
η

+λd ∑
c∈Cd

V d
c (d)+λx ∑

c∈Cx

V x
c (x) (6)

where O = {u1,u2, . . . ,up}, ui is the frame number and σ2
η is the variance of the Gaussian

noise. The clique potential function for d is

∑
c∈Cd

V d
c (d) =

M

∑
i=1

M

∑
j=1

[(d(i, j)−d(i, j−1))2 +(d(i, j +1)−d(i, j))2 +(d(i+1, j)−d(i, j))2

+(d(i, j)−d(i−1, j))2] (7)

where c is a clique, C is the set of all cliques and Vc(·) is the potential associated with clique
c. We choose V x

c (x) to be of the same form to V d
c (d).

Recently, graph cuts have been proposed as a fast optimization technique for several
computer vision applications. However, they are limited to minimization of submodular
energy functions such as used in areas like image segmentation, stereo matching etc. [6]
[20]. In applications that involve blur, the cost functions in the MAP-MRF framework turn
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out to be non-submodular [29],[30]. For such energy functions, graph cuts have not been
shown to exceed the performance of simulated annealing (SA) [30], [19]. The usefulness
of the Quadratic Pseudo Boolean Optimization (QPBO) algorithm depends upon how many
nodes in the graph are labeled [30] (page 3, (section 2.2)). Also, in section 3 of [30], it
is asserted that the roof duality works well in cases where the number of non-submodular
terms is small. However, in more difficult cases the roof duality technique leaves many
nodes unassigned. We refer to Table 1, on page 7 of [30]. The comparison results for image
deconvolution (only ‘space-invariant’ blurring with number of gray levels limited to 32) are
presented in the last two rows (3×3 and 5×5 kernels) of this table. Note that the number of
unassigned labels for the QPBO and the ‘probing’ QPBO (QPBOP) methods are a whopping
80% for the 5× 5 sized kernel. Note that using SA, the energy at convergence is zero and
all the nodes are labeled. Interestingly, SA is shown to outperform all the methods including
QPBO and QPBOP (pointed out in [30] in the ‘Image Deconvolution’ sub-section on Page
8). Hence, we have used the SA algorithm to minimize U p(d,x). Parameters λd and λx must
be tuned to obtain a good estimate of both d and x.

6 Experimental results
We captured sequences of scaled and space-variantly defocused images using an off-the-
shelf Olympus C5050Z digital camera which was operated in the ‘super-macro’ mode. To
simulate the effect of missing data due to possible damage to the CCD sensor, we randomly
scratched the captured frames. Note that during the inpainting process we assume the knowl-
edge of the locations of the regions which have to be filled in. This is a standard assumption
in the literature and we exploit it in our framework. For all our experiments, we feed the en-
tire stack as input to the method in [24], to obtain the initial estimate of the inpainted depth
map. For the inpainted focused image, we choose an arbitrary initial estimate as a cropped
portion of the Lena image. In all the experiments, frames are captured by moving the object
along the optical axis in finite steps of ∆d = 1 mm.

In the first experiment, we chose a real-world specimen, a small wooden piece on which
a face is carved. The captured images are space-variantly blurred and scaled. Note the loca-
tions indicated by white arrows in Fig. 2 (a). At these locations, in Fig. 2 (b) we can make
the interesting observation that the position of the damaged regions is fixed but different im-
age features are covered by the black pixels in this image. This is the cue which we exploit
to fill-in the missing parts in both the focused image and the depth profile. The inpainted
image using the proposed algorithm is shown in Fig. 3 (a). The values of the parameters
chosen in the optimization procedure were λd = 1× 108 and λx = 0.05, respectively. The
reconstructed depth map is shown in Fig. 3 (b). We can see that the proposed method is able
to reconstruct the depth information even in regions with missing observations. It is notable
that various features features of the face like the eyes, the eyebrows, the nose and the straight
edge below it are faithfully reconstructed both in the inpainted image (Fig. 3 (a)) and the
inpainted depth map (Fig. 3 (b)), respectively.

In the next experiment, we chose another real-world specimen, a small clay model of a
bunny. Two frames of a portion of the head of the bunny are shown in Fig. 4 (a) and (b),
respectively. To simulate the regions where there is sensor damage, we have marked them
as black in the images. The proposed algorithm was run with four frames from the stack
as the input. The inpainted focused image of the specimen is shown in Fig. 5 (a). Several
details that were missing are recovered. The algorithm is able to propagate the information
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(a) (b)
Figure 2: Wooden specimen depicting a face. (a, b) Two frames chosen from the scaled
and defocused stack with missing data, simulating the effects of a camera having a damaged
sensor.

(a) (b)
Figure 3: (a) Inpainted focused image. (b) Grayscale image corresponding to the inpainted
depth map.

(a) (b)
Figure 4: Clay model of a bunny. (a, b) Second and fourth frames showing the effects of
magnification and space-variant defocusing and regions of missing data.

in the smooth regions into the gaps as well as preserve the edges. The grayscale image of the
reconstructed depth profile is depicted in Fig. 5 (b). Observe that the contours of the eyelids
have been recovered well.

To demonstrate the capability of our method in performing disocclusion, we present
results of yet another experiment. Here, a small pin was kept across the field-of-view of the
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(a) (b)
Figure 5: (a) Inpainted focused image of the bunny specimen. (b) Grayscale image of the
inpainted depth profile obtained using the proposed method.

(a) (b)
Figure 6: A clay model of a bunny occluded by a straight object. (a, b) Two frames chosen
from the stack.

(a) (b)
Figure 7: (a) Inpainted focused image using our method demonstrating disocclusion. (b)
Grayscale image of the shape profile.

camera such that it occludes the specimen which is chosen as a clay model of a bunny. We
have provided as supplementary material, a video captured as the specimen is moved in front
of the static camera and occluder. To demonstrate the effects of occlusion, scaling and space-
variant defocusing, two frames from the stack are shown in Fig. 6 (a) and (b), respectively.
Note that the position of the occluded regions is fixed in all the observations and is assumed
to be known. The proposed method yields the inpainted focused image shown in Fig. 7 (a).
The features of the eye portion at the locations of the occluder have been recovered well.
Note that the edges that were occluded have been recovered. Particularly, the edges at the
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junction of the eyelids and the eyeball are clearly visible. Also, the texture on the surface
of the specimen has been deblurred well and can be discerned easily. The estimated depth
profile is shown in Fig. 7 (b). Even in occluded regions, the algorithm is able to recover the
depth information. We used four frames with good relative blur among them from the stack
to reconstruct the completed focused image and the depth map in all the experiments.

7 Conclusions
In this work, we demonstrated the interesting possibility of using motion parallax as a cue
for inpainting in the SFF scenario. When a real-world camera is used to capture a stack,
the frames are subject to magnification effects. In addition, there can be data loss in certain
regions due to sensor damage and/or occlusions. Despite missing regions in the observations,
we have shown that is possible to obtain the focused image and reconstruct the structure of
the underlying specimen using only a few frames from the stack. In effect, we are able to
integrate inpainting, deblurring and structure recovery within a single unified framework.
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