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Abstract

The paper addresses the problem of face recognition under arbitrary pose. A hi-
erarchical MRF-based image matching method for finding pixel-wise correspondences
between facial images viewed from different angles is proposed and used to densely reg-
ister a pair of facial images. The goodness-of-match between two faces is then measured
in terms of the normalized energy of the match which is a combination of both structural
differences between faces as well as their texture distinctiveness. The method needs no
training on non-frontal images and circumvents the need for geometrical normalization of
facial images. It is also robust to moderate scale changes between images. The proposed
approach is evaluated on the CMU PIE database and promising results are obtained.

1 Introduction
Face recognition technology compared to most of its alternatives is well suited to security
applications in real world conditions as a result of being non-intrusive and operable at a
distance. Although impressive performance has been reported in controlled conditions, many
problems arising in realistic situations still remain unsolved. The two most challenging
problems in realistic scenarios are change of facial image pose and illumination conditions.

A variety of different methods have been proposed to deal with the problem of changes
in viewing angle. These works can be roughly categorized into three major groups. The first
group can be considered as the methods which make use of multiple images corresponding to
different poses stored in the gallery. One of the earliest works in this category is the work of
Beymer [2] in which every input image was first aligned with the relevant reference images
from the database and then a similarity measure was computed for recognition. Other work
by Singh et al. [14] is another example of this group in which composite facial images are
constructed using semi-profile and frontal views.

The second category are the methods which try to synthesize virtual views either in 2D or
3D. One of the most well known approaches in 2D is the active appearance model by Cootes
et al. [4]. Another example is the work by Jimenez and Castro [5] in which point distribution
models are constructed and eigenvectors responsible for appearance changes due to change
of head pose are identified. After correcting the pose, Gabor filtering is used for recognition.
In the work by Zhang et al. [22] frontal and side-view face images are used to generate virtual
views of a subject. Once shape and texture of a subject’s face are estimated, virtual images
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in different poses are generated. For recognition, holistic methods are used. In 3D, one
of the most successful methods is the 3D morphable model proposed by Blanz and Vetter
[3]. In parallel with the methods which try to synthesize a novel view of the face, using
either one or multiple images from the gallery, there are other methods which try to learn the
most discriminant information between subjects across different poses. The work by Kim
and Kittler [7] and Kanade and Yamada [6] are good examples of this category. In another
work by Kim and Kittler [8] authors have tried to make use of different pose-invariant face
recognition experts in a multiple classifier fusion system framework. There are also some
relatively robust feature-based methods which can tolerate moderate pose variations such as
the work by Pentland et al. [11] and by Wiskott et al. [21].

The algorithms in the first group fail when only images of one pose (typically frontal)
for each subject are available in the database. The main drawback of the methods which
try to synthesize novel views is the imperfection of the synthesizing process in addition to
the requirement for prior labeling of landmarks which is usually carried out manually. An
observation regarding the 3D methods is that although these techniques perform slightly bet-
ter than the 2D alternatives, they still suffer from unresolved problems. The most important
one is that in 3D-based geometric normalization methods, the recovered shape and texture
are completely determined by the 3D morphable face model fitted to the query 2D face im-
age which has the capacity to reconstruct only the information captured during statistical
learning. As a result, these approaches can not recover atypical features that have not been
available in the training set. Moreover, the high computational complexity of 3D methods in
comparison with 2D algorithms makes them unsuitable for real-time applications.

One alternative to the synthesis of new views is to compare facial images as they are
and rely only on the similarity of common visible parts between the query and the reference
images. This process necessitates establishing dense correspondences between the images.
With this motivation we propose a coarse-to-fine MRF-based image matching method which
can establish pixel-wise correspondences between images and can also tolerate moderate
scaling, translation, perspective effects, in-plane and out-of-plane rotation of the head. A pair
of images are then compared using their structural differences as well as texture similarities.
The underlying idea can be considered similar to the graph-based approaches common in
general object recognition settings where the concepts of interest are assumed to be built
up from simple neighboring primitives coded as the nodes of a graph and the neighborhood
structure and contextual dependencies between primitives are represented as the edges. The
recognition is then performed by evaluating the similarity of the two graphs in a matching
process. Similar works in the area of face recognition based on this idea include e.g. the
works in [9, 10, 17, 21].

The paper is organized as follows: In Section 2, the image matching method in [12] while
considered as a baseline, is overviewed. In Section 3, a new hierarchical matching method
is introduced. The similarity criterion for assessing the quality of a match is presented in
Section 4. The results of an experimental evaluation of the method on the CMU PIE database
[13] are presented and discussed in Section 5. Section 6 concludes the paper.

2 Image matching

Many computer vision problems can be formulated in an energy minimization framework
where the objective function has the following form:
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E(X ∣θ) = ∑
s∈ν

θs(xs)+ ∑
(s,t)∈ε

θst(xs,xt) (1)

ν corresponds to sites and ε to edges. xs denotes the label of site s ∈ ν . θ defines the
parameters of the energy: θs denotes unary data penalty functions whereas θst denotes pair-
wise potentials. It is worth noting that in this formulation only cliques of size up to two are
considered.
The minimum energy in equation (1) corresponds to the maximum probability of the solution
on an MRF which is a Gibbs distribution.

2.1 Decomposed model
The method proposed in [12] formulates the image matching as a labeling problem on MRFs.
The label set is Lreg = {(xs1 ,xs2)∣xs1 ,xs2 ∈ L} where xs1 and xs2 denote displacements in
horizontal and vertical directions. The deformation in horizontal and vertical directions is
modeled by two MRFs interacting together. The edge set of this model is comprised of two
separate edge sets. The edge potential functions on each of these layers are assumed to be
identical while inter-layer edges encode the data term. For the intra-layer edges the following
crisp continuity terms are used in [12]:

θst(xs,xt) =

⎧⎨⎩ 0, xs = xt ,
cr, ∣xs− xt ∣= 1,
∞, ∣xs− xt ∣> 1.

(2)

In order to achieve more flexibility in deformation, we replace hard continuity terms by
quadratic penalty function:

θst(xs,xt) = c(xs− xt)
2 (3)

where c is a normalizing constant. In [12], by restricting the neighboring blocks (blocks are
of size 4× 4) to have relative displacements of no more than one pixel, the scale changes
were limited to [.75,1.25] of the model image size whereas by replacing the hard constraints
by a quadratic term a much greater range of scales can be accommodated.

The inter-layer edges encode the data term, i.e. the cost of assigning label xs1 in layer
one and label xs2 in layer two to two isomorphic nodes of the graph. The data term has
been constructed using block model. In the block model, the pixels are grouped into non-
overlapping blocks which correspond to nodes of the graph. The data term for the block
model is defined as below:

θs1s2(xs1 ,xs2) =
1

σ2 Dis(I1
s⃗ , I

2
s⃗+(xs1 ,xs2 )

),s1 ∈ ν
1,s2 ∈ ν

2 (4)

where I1
s⃗ is a block on image I1 and the corresponding block on image I2 is denoted by

I2
s⃗+(xs1 ,xs2 )

, which is the block with the coordinates s⃗+(xs1 ,xs2), where s⃗ is the vector point-

ing to the position of block I1
s⃗ . Dis(.,.) is a dissimilarity measure which is defined as the sum

of squared differences over the pixels of corresponding blocks. Since edge maps are less
affected by unwanted illuminations changes, in order to achieve robustness against changes
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in illumination, we use horizontal and vertical edge maps instead of gray scale images. Hor-
izontal and vertical edges are normalized to the range [-1,1] and combined to form the data
term. Moreover, in computing the data term, not only the block under consideration but also
a neighborhood is used to collect local support from a small neighborhood. One can assign
more weight to the block under consideration and lower weights to its neighbors. It has been
observed that computing the data term in this way improves the matching accuracy. Thus the
data term is computed as:

θs1s2(xs1 ,xs2) =
1

σ2 [ ∑
v⃗∈N (⃗s)

wv⃗Dis(I1h
v⃗ , I2h

v⃗+(xs1 ,xs2 )
)+ ∑

v⃗∈N (⃗s)
wv⃗Dis(I1v

v⃗ , I2v
v⃗+(xs1 ,xs2 )

)],

s1 ∈ ν
1,s2 ∈ ν

2 (5)

where I1h
v⃗ and I2h

v⃗+(xs1 ,xs2 )
denote a block in the horizontal edge map of the first image and

its corresponding block in the horizontal edge map of the target image respectively. I1v
v⃗ and

I2v
v⃗+(xs1 ,xs2 )

correspond to the same block coordinates but in the vertical edge maps. wv⃗ stands
for the weight we choose for each of the neighbors of the block under consideration. Also,
N (⃗s) denotes a neighborhood of a block with the vector s⃗ pointing to its center.

It is desirable to rely more on common features of the two images and bypass the atypical
features which appear only in one image. This can be achieved by ignoring the weak edges
and setting those below a threshold to zero and also by truncating the data term which makes
the matching more robust to outliers and occlusions.

3 Hierarchical image matching
The method in [12] groups pixels into non-overlapping blocks and estimates a displacement
vector for each block. The advantages of using block model can be stated as follows. First,
by using blocks instead of pixels, the number of nodes in the underlying graph reduces which
results in reduced computational cost. Secondly, using the block model for computing the
data term makes the method more robust against noise. The drawback of this model is
the error induced by assuming that all pixels inside a block have similar disparity vectors.
One way to obtain disparities for each pixel is to construct the data term using single pixels
instead of block model. However, this prohibitively increases the computational burden
and also makes the system more susceptible to noise. The robustness against noise is a
desirable property here as one would need to match facial images which can potentially
be taken with different devices and correspond to different subjects viewed from different
angles. The other drawback is the increased probability of the optimization method to get
stuck in a local minimum as a result of increased dimensionality of the configuration space.
One alternative to this approach is to match images in a multi-scale scheme in which upper
levels of the hierarchy give a rough estimate of the motion field and lower levels fine-tune
the estimated motion. This can be achieved by employing relatively larger (compared to
the image size) blocks in the higher levels of the hierarchy and relatively smaller blocks in
the lower levels. It should be noted that what differs in different levels is the relative size
of the block to the image and not the absolute sizes. Thus, in principle instead of low-pass
filtering and sub-sampling the image, one can only low-pass filter the image and retain the
original size of the image but use different block sizes in different levels. Inspired by this
idea which has been previously employed for motion estimation (see e.g. [18]), we propose a
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Figure 1: Hierarchical image matching: Left: grouping pixels into clusters in four different
scales, Right: disparity estimation for a single node (the darkest block) in four different
scales.

novel method which facilitates multi-resolution image matching within the framework of the
efficient optimization methods for MRFs. In a method in which higher levels of pyramid are
low-pass filtered and sub-sampled versions of the original image, fine scales of disparities
cannot be detected as a result of sub-sampling. In contrast, by retaining the original image
size, even fine disparity information is not lost in the higher levels of the hierarchy. In this
approach all images corresponding to different scales are of the same size, but higher levels
are more blurred versions of the original image. The efficiency gained in this method comes
from the fact that at higher levels, the number of nodes is reduced. Once the finer scales are
reached, it is sufficient to search for correspondences in a smaller area since the upper level
gives a rough estimate of the disparity vector. Also, the robustness to noise is enhanced by
virtue of matching more blurred versions of the images at higher levels. This approach is
illustrated in Figure 1. Apart from the speed gain in the hierarchical scheme, comparably
better solutions can be obtained as a result of getting closer to the global minimum and
reducing the probability of getting stuck in local minima far from the global one. This
property comes partly from the fact that at higher levels, larger blocks capture relatively
longer range interactions and the rough estimate of the disparities makes the optimization
bypass local minima and converging closer to the true global minimum while finer scale
fine tune the obtained solution. Typical values for the gaussian filter order (with binomial
coefficients), block sizes and disparity search ranges are given in Table 1.

There are two factors that have to be taken into account in image matching. The first
one is the uniqueness constraint and the second is the occlusion problem. The uniqueness
constraint states that every primitive in one image can at most correspond to one primitive
in the other image. This property is not desirable here. In practice, facial images can be in
different scales. Because we are interested in finding pixel-wise correspondences, apparently
one pixel in the target image with a relatively smaller scale can potentially correspond to
more than one pixel in the template image with relatively larger scale. The second issue is the
occlusion problem. The problem can be much readily dealt with in applications like stereo
in which the disparities are only in one direction and the images are exactly the same except
the viewing angle. A good example among other methods which solve for occlusions in a
general matching scenario is the work in [19] where sparse image features are matched. The
situation in here is more complicated because the images to be matched may correspond to
different individuals taken from different viewpoints subject to self-occlusion. Also, instead
of sparse image feature based matching, pixel-wise correspondences are sought. As a result,
the common approaches used in MRF matching, e.g. augmenting the label set with an extra
label (null label) representing all content but the content of interest, makes the system very
vulnerable to small differences in the appearance and tend not to yield stable results in the
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Level 3 2 1 0
Block size 8×8 4×4 2×2 1×1

Maximum disparity 40 20 10 5
Filter order 20 15 5 -

Table 1: Typical values for block size, disparity search range and Gaussian filter order in
hierarchical image matching.

Figure 2: Up row from left to right: template, target and results of matching in four different
scales (level 3, 2, 1 and 0), bottom row: result of matching a half face to a non-frontal facial
image: from left to right: template, target, matched template.

presence of self-occlusion (a common situation when viewing faces from different angles).
Occlusion, in this case can be better dealt with by employing higher order interactions in an
MRF (possibly a global constraint on the joint probability of labels at all nodes). There are a
number of recent papers proposing possible ways of incorporating higher order interactions
in the underlying graph structure, e.g. the works in [15, 20? ]. The advantage of using
higher-order interaction is in tighter relaxations. In spite of the progress in this direction,
current methods are not computationally very efficient. Solving the labeling problem with
an efficient method in the presence of higher order interactions is left as as a future objective
in this work. Instead of directly solving for occlusion during optimization, in the case of
pan movement of the head we use only half of the face closer to the sensing device. In the
case of tilt movement we make the assumption that the whole face is visible and solve the
matching for the whole face. Figure 2 illustrates the results of applying our hierarchical
matching method on two example pairs of faces from the CUM-PIE database. In order to
decide whether the left half, right half or the full face of the gallery image should be matched
to the probe image one may take advantage of a pose estimation method which could only
detect whether the subject’s head’s motion has a pan component to the right or to the left.
Although a pose estimation method may speed up the method, it is not strictly needed. The
problem can be handled using the assumption that if there is a pan component of the head
movement then using half face images would result in lower normalized energy. Hence, one
can match full face, left half and also right half of the gallery image to the probe image
and compare the normalized energy of the match to determine the pose of the probe image.
Although we have not used this exhaustive method (for efficiency reasons) we confirmed its
validity during our investigations.

Citation
Citation
{Sontag, Meltzer, Globerson, Jaakkola, and Weiss} 2008

Citation
Citation
{Werner} 2008



S.R. ARASHLOO AND J. KITTLER: POSE-INVARIANT FACE RECOGNITION 7

Figure 3: From left to right: initial image, after photometric normalization and after applying
LBP.

4 The similarity criterion
Once dense correspondences have been established between a pair of images, their similar-
ity is measured in terms of their textural content as well as structural differences. In the
following we first describe how to compare two images using their texture and then how to
measure the differences between a pair of facial images using the configurational arrange-
ments of their entities.

4.1 Textural content
Different facial images may be exposed to different lighting conditions during image capture
time. Therefore, applying a photometric normalization step before measuring the similar-
ity seems necessary. In [16] an effective photometric normalization method is introduced.
The technique is based on a sequence of stages designed to decrease the effects of illumina-
tion changes while preserving the fundamental visual content. Figure 3 shows the result of
applying the method on a sample face image.

Before comparing the similarity of the textural contents of the two images under con-
sideration, in order to extract texture features, we apply a local binary pattern operator. The
LBP is a non-parametric operator defined at a given pixel location (xo,yo) as:

LBP(xo,yo) =
7

∑
n=0

L(in− io)2n (6)

where io is the gray value of the pixel under consideration and in is the gray value of its 8
neighboring pixels. Where function L(x) is defined as:

L(x) =
{

1 x≥ 0,
0 x < 0. (7)

4.2 Structural information
The structural information of faces can be also exploited to enhance the performance of the
system. Apparently, different faces apart from their textures have different structures which
can provide discriminatory information in authentication. In [1] factors which unfavorably
affect the binary term of the energy for recognition are identified as pose, non-rigidity of
the pattern and last but not least, statistical dependencies between residual displacements of
neighboring sites as well as the limited cardinality of the potential functions. In order to
remove the effect of the rigid motion, the distortion associated with the global spatial trans-
formation was subtracted from distortion vectors thus achieving global spatial transformation
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Figure 4: Illustration of pose variation in the CMU PIE database [13].

invariance. In order to take into account non-rigidity of patterns, a number of different exem-
plars of each class were matched one to another and the average distortion was considered
as a class-specific model of deformations. The problems of inherent correlation between
residual displacements of neighboring sites and that of the limited cardinality of the cliques
defining the potential functions were partly compensated for by modeling these interactions
using covariance matrices which convey correlation information between different sites even
at a larger range. In this work we estimate covariance matrices for the full face in the case
of tilt movement of head and for the half face in the case of pan movement of the head of
the subject. The structural differences between a pair of images are hence gauged in terms
of the Mahalanobis distance:

DMahalanobis(Ii,J) = (ēv− µ̄iv)
t
∑
−1
v (ēv− µ̄iv)+

(ēh− µ̄ih)
t
∑
−1
h (ēh− µ̄ih) (8)

where Ii is a template of class i, µ̄iv and µ̄ih are the average distortions for this class in vertical
and horizontal directions respectively pursued in a raster scan fashion. ēv and ēh are the local
distortion vectors obtained after matching Ii to J. In order to obtain the local distortions, a
projective transformation is fitted to the set of corresponding points and the effect of rigid
motion is subtracted from the distortion field. ∑

−1
v and ∑

−1
h represent inverse covariance

matrices capturing the correlation of distortions in vertical and horizontal directions respec-
tively. The final distance measure between a pair of images is finally defined as a weighted
sum of their texture differences and structural distance.

5 Experimental setup and results

The proposed method for recognizing rotated faces is tested on a subset of the CMU PIE
database [13] consisting of 884 images of 68 subjects viewed from 13 different angles. Nine
of thirteen images of each subject are captured roughly at the head height spanning a range of
angles from approximately full right profile to full left profile. Two of the remaining images
were captured from the corners of the room and the other two were captured from above and
below the central camera. In this way images of substantially different poses of each subject
are available. Figure 4 shows an example of pose variation in the CMU PIE database. As we
want to evaluate the performance of the system subject to viewing angle, we just use images
under the same illumination and neutral expression. The frontal views of subjects (pose 27)
are considered as gallery images and all the rest (12 different poses) are used as test images.
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Figure 5: Recognition rates of the proposed approach across different poses using only tex-
ture and shape&texture information together.

pose PDM [5] AA-LBP [22] The proposed approach
02 72 95 98.52
05 100 100 98.52
07 N/A 100 100
09 N/A 100 100
11 94 100 97.058
14 62 91 100
22 N/A N/A 77.94
25 N/A 89 94.11
29 98 100 100
31 N/A 80 95.58
34 20 73 72.05
37 89 100 98.52

Average N/A 93.45 95.85

Table 2: Comparison of correct recognition percentage across different poses between the
proposed method and the works in [5] and [22].

Figure 5 shows the result of recognition using texture and also shape and texture together.
It is worth noting that the obtained recognition rate using only texture information does not
need any training, neither on frontal nor on non-frontal images. The improvement using
structural information is marginal. One reason for this is the inability of a simple projective
transformation to model pose changes of a 3D non-planar object to provide substantially
useful discriminatory information. The second reason is that shape and texture information
are more or less correlated in the sense that if the method fails to find a good match between
images both shape and texture comparison stages get affected. In Table 2 the results of a
comparison of the proposed approach with two other methods are presented. It is evident
from the table, the proposed approach outperforms the method in [5] in all poses except pose
05. The overall performance of the proposed method is far better than the one in [5]. Also,
our method outperforms the state-of-the-art method in [22] in four different poses, especially
when there is a large deviation in viewing angle from frontal. Also, the average performance
achieved is better than that of the work in [22] (the average performance is computed after
excluding pose 22 in order for the result to be comparable with the method in [22]). It
should be mentioned that both methods in [5] and [22] take advantage of non-frontal images
for training whereas we have only frontal images as gallery images.
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6 Conclusions

The problem of face recognition under arbitrary pose was addressed. A hierarchical MRF-
based image matching method for establishing pixel-wise correspondences between facial
images was proposed and used to densely register a pair of facial images. The quality of the
match between two faces was gauged in terms of the normalized energy of the match, captur-
ing both structural differences between faces as well as their texture distinctiveness. Without
any training on non-frontal images and also without geometrical normalization of facial im-
ages the proposed approach gave promising results comparable and also outperforming (in
some poses) the state-of-the-art methods when tested on the CMU PIE database.
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