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Abstract

Given an off-the-shelf camera, one has the freedom to move the camera or play
around with its intrinsic parameters such as zoom or aperture settings. We propose a
framework for depth estimation from a set of calibrated images, captured under general
camera motion and parameter variation. Our framework considers the practical trade-offs
in a camera and hence essentially generalizes the more constrained areas such as lateral
or axial stereo, shape from defocus/focus etc. We discuss practical issues where such an
approach becomes important. We pose the problem in a MAP framework and compute
the depth estimates efficiently using belief propagation (BP). We also incorporate the
visibility consideration to handle occlusions. Moreover, we use the vital cue from color
image segmentation to constrain the estimation process. Our results demonstrate the
effectiveness of our approach to localize discontinuities and handle low-textured regions

1 Introduction

Various cues are exploited by vision systems to compute depth information. Typically, the
cues may be classified as those embedded in the scene itself, such as texture, illumination,
perspective etc and those induced by the imaging device, such as motion, blur/accommodation
etc. We concern ourselves with the latter category i.e. the cues depending on the camera
parameters, on which one typically has more control than on the scene conditions. The cam-
era parameters include aperture radius, distance between image plane and lens etc, while
camera motion involves translation and rotation. Variations in these cause effects such as fo-
cusing/defocusing, zooming, parallax, occlusions etc. The blur and motion carry important
information about the shape of the 3D world.

In fact, the axial/lateral stereo [11], depth from defocus (DFD) [6] etc problems are es-
sentially special cases of this more general scenario. In these, one assumes restrictions on
either the motion and/or the internal parameters. However, due to physical limits of the cam-
era, such assumptions may not always hold. For instance, the pin-hole model assumed for
stereo, is not valid when one operates on distances beyond the Depth of field (DOF) and the
images suffer from defocus blur. On the other hand, single view scenario in DFD/SFF, may
not be applied in situations where one needs to have a larger field of view (FOV) and needs
to move the camera. Thus, a generalization of the task of shape estimation, that respects the
physical limits of cameras, is an important practical issue.
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1.1 Relation to previous work

Few works have been reported when both blurring and motion cues are taken into account in
the same framework. In [1], the authors have proposed a technique to compute affine motion
and the defocus blur simultaneously in images of planar scenes. The work has been extended
to estimate defocus blur and arbitrary spatial shifts in [3]. However, in these works, only the
defocus blur is exploited as a cue for shape.

Some works [12] have motivated the problem of shape estimation from a cue-combination
point of view. They employ a sequential process, estimating the shape using one of the
DFD/SFF and stereo techniques and improving this estimate by applying the other. Some
active approaches have also been reported [2] that actively control the focus and vergence.
Although these techniques utilize both motion and defocus cues, they independently use
stereo, DFD/SFF techniques and require an image configuration which is tailored for these
specific techniques. As we argue, such configurations may not be available due to the camera
limits. Moreover, the methods do not relate motion, blur and depth and use (the less reliable)
local window based DFD/SFF techniques.

Some works have considered a strong coupling between blur and motion since both are
related to depth [4, 5, 7]. In [4], the authors create a virtual stereo pair by varying both
the size and the lateral position of the aperture and thus, giving rise to parallax and relative
blur. However, this configuration has limited freedom and it also requires a special camera
setup. The authors in [5] consider depth estimation in a binocular stereo scenario with lateral
motion. Here, multiple (around 10) differently focused images are captured from each view
and a window to constraint the disparity estimation is computed using the blur-disparity rela-
tionship. However this relationship is used locally and only to define windows for disparity
estimation. The authors in [7] use this strong coupling in a MAP-MRF framework to com-
pute blur map in a binocular stereo setting. They also capture more than one image from
each view with different focus setting.

The novelties of this work as compared to the above mentioned works are 1) Our image
acquisition process offers more freedom so as not to be constrained by a strict DFD, SFF
or a stereo like setting. We consider a calibrated camera configuration with general camera
motion and parameter variations. 2) We compute the MAP solution in an efficient manner
using the popular fast-BP algorithm [13]. To our knowledge, this is first time that BP has
been applied for depth estimation involving the effect of defocus blur. 3) We also address
the important issue of visibility that has not been addressed in the above mentioned works.
4) We constrain the estimation process by using a cue from color image segmentation [14];
a cue that has been shown to be very successful in conventional stereo works [14].

Before getting into the details of our approach, we discuss some practical examples of
camera parameters where a general approach for shape estimation will indeed be important;
a discussion which may be important to consider domains for use of practical cameras. For
the intrinsic parameters, we consider variations in the aperture and lens to image plane dis-
tance viz. the two commonly controlled parameters. Our framework also accommodates the
zooming process caused by variation in the latter. However, we assume (as is common in
traditional DFD) that the scene completely lies in the forward or the reverse blur cone, i.e.
the point of focus is beyond the farthest point or closer than the nearest point in the scene.
Also, for this work, the camera motion is restricted to only translation along all the 3 axes.
However, our framework can be extended to camera rotation in a straightforward way.
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2 Practical camera limits

Typically, for modern cameras the internal parameters that a user can control are the aperture
size, the effective focal length and the lens to image plane distance. These parameters control
factors such as DOF and FOV which affect the image quality, resolution and spatial content.

The DOF is defined as the range of the distances in the real world where the object
appears to be focused in its image. The DOF can be expressed as [10]

2ancf2(l/t—f) _ 2f2fnc(m+l)
fH=facr(u—f)? o PmE - [
Here, f, is the f-number of the lens (inversely proportional to the aperture radius r), f denotes
the focal length, u stands for the working distance, m expresses the magnification and ¢
denotes the acceptable circle of confusion which typically is fixed for a sensor size and an
image format. It can be shown that the DOF is inversely related to r, u and f. The angle of
view, that also depends on f, u and the sensor dimension d is given by

d(u—f)
2uf

Note that o is also inversely related to f. The FOV is directly related to ¢ and r.
By closely scrutinizing the above equations, we can deduce the following:

DOF = DOF

(D

o = 2arctan

2

e Moving the camera closer to the objects to acquire enough resolution will reduce the
FOV. Also, the objects at close distances can lie beyond nearer limit of DOF and
resulting in a defocused image.

e Another way to acquire sufficient resolution is to increase the magnification. However,
this means increasing f, which will also cause reduction in the FOV. Also, this will
decrease the nearer DOF limit, increasing the chance of inducing defocus blur.

e To increase FOV, one can either increase r or reduce f. The latter will reduce magni-
fication and hence the resolution. Increasing r but will decrease the DOF resulting in
increased defocus blur.

Thus, there are trade-offs between acquiring sufficient detail, content and image quality.
In Table 1 we provide some data for an Olympus digital camera in this respect. [8, 9].

u=50cm u=20cm

fo | DOF(cm) || f, | DOF(cm)
2 | 48.6-51.5 2 19.1-21
4 | 47.2-53.1 4 18.2-22.1

5.6 | 46.2-54.5 || 5.6 | 17.6-23.1
8 | 44.7-56.7 8 16.8-22.8

Table 1: DOF variation with f;,, u for Olympus C-5050 (for f = 14.2mm)

Note that at u = 20cm, the object closer than 16¢m or farther than 22cm, will result in a
defocused image. Moreover, in the super-macro mode of the camera (typically used between
u = 3cm to 20cm), the DOF is even smaller with the FOV being about S5cm of the real world.

The above discussion point towards the fact that in some very practical situations, one
must compromise the image quality if one wishes the desirable resolution, no matter how
much one plays around with the camera parameters.
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3 Image generation: Coupling motion, blur and depth

We now discuss how we relate motion, blur and depth. We follow the convention of the z-axis
being parallel to the optical axis direction, and the x- and y-axis being parallel to the image
plane axes. The observed images g;s are modeled to be warped and blurred manifestations
of an ideally non-blurred image f as

gi(n,m) =Y hi(ni,n,0,01:(11), 62i(1a)) - f(61i(11), 02i(12)) + Mi(n1,m2) (€)]
11,0

In the above equation, the geometric transformation of pixels is denoted by 6;;(/;) and
6,i(1) while h;(ny,na,0;,601;(11),602(lr)) signifies the kernel that blurs a pixel in the ith
image f(eli(ll)792i(12))-

In the following discussion we refer to Fig. 1 which shows perspective projection and
blurring for 2 lenses. Let us denote the coordinates of a 3D point in space as (X,Y,Z), with

Figure 1: Camera parameters

respect to the reference camera position. Denoting the camera translation by ty;, f,; and t;
along the x-, y- and z-axes respectively, the projection of this ray in the reference view and

ith view can be expressed as

X Y e = M) g gy L)

I
=7z Z 41y 1

where v; and v; are the lens to image plane distances in the reference and the ith view,
respectively. Eliminating X and Y and denoting the ratio v;/v| as v,, we can relate pixel
coordinates in two views in terms of the camera parameters and depth Z as

vl Z+vity
Z+t;

vl Z + Vityi

6;(l1) =
ll(l) Z+1zi

and 91,’([2) = (5)
Having described the pixel motion, we now focus our attention on blurring. The Gaussian
function is a popular model to the blur kernel owing to the effect of the central limit theorem

on various optical aberrations [6]. This Gaussian blur kernel can be expressed as

1 — 9i l 2 -0 i l 2
B2, 01, 00i(1), Bx(12)) = 5~ exp (_ @ 1(1))2;2(112 hi(l2)) ) ©)

i
The blur parameter ¢ in the above equation is related to the absolute depth Z from the lens.
As the camera translates along the optical axis by ¢,; for the ith image, the depth of the point

is now Z £1t;. The blur parameter o;, in the ith camera position is related to this depth
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through the aperture r;, lens to image plane distance v;, working distance u; and focal length

f as

o 1 1 1 e
i=privi| - ————o—
P\ 7 7 T Z %1

Note that in equation (6) the blur kernel is centered on the warped pixel (6y;(/1), 62i(12)).
Thus, according to the above model and Fig. 1 the blur kernel is formed around the point
where the central ray projects on to the image plane. Hence, the position of the blur kernel
is also warped in the ith ; image.

From a physical point of view, aperture variation will cause variation in the blur param-
eter. The change in the lens to image plane distance causes blur variation as well as global
scaling, whereas camera translation is responsible for depth-dependent pixel motion as well
as blur variation for ¢, translation. Thus, pixel warping, blur warping and blur magnitude all
are related to the depth. Hence, in equation (3), the parameters o;, 01;(/;) and 65;() are
strongly coupled through a common unknown Z, which we wish to estimate.

4 Energy minimization using belief propagation

We now move on to describe our estimation approach. We formulate the depth estimation
problem in a MAP framework which we solve using the fast-BP algorithm [13]. The max-
product BP computes the MAP estimates over a graph [13]. For images, the graph is usually
a grid-graph, with graph nodes as pixel locations. (For the following discussion on BP, we
denote pixel locations as p, g and s, for conciseness). The max-product rule works by passing
messages m;q( f) at time ¢ to a node ¢ from its neightbouring node p of the graph as follows

My (fq) = mln( (o f) +Dp(fp)+ ), mi, fp)> (®)

seN(p)lq

where D, (f,) is the data cost at node p for accepting a label f,,, V(f, f,) is the prior cost
between the neighbouring nodes p and g and s € N(p )\q denotes the set of nodes in neigh-
bourhood of p, not including ¢g. The message vector mpq is a L—dimensional vector, where
L is the number of labels that each node can take. This message passing is iterated for each

node until convergence. At convergence, the beliefs are computed as

by(fq) = Dy(fy) + Z Mpq(fq) )

PEN(q)

The belief b, (f,) at each node g is a L—dimensional vector. The MAP solution for the label
at g is that f;, which maximizes b, (f;).

In recent years, belief propagation has been demonstrated to be one of the better per-
forming algorithms in stereo vision domain [14, 17, 18]. As mentioned earlier, our work
can be looked at as generalization to the multi-view stereo problem that also handles the
defocus blur caused by the physical limits of a camera. Hence, in our case, the data cost that
must be computed at each node in the BP algorithm is considerably different than that used
in the traditional stereo depth estimation. Our cost computation also takes into account the
defocus blur at each node along with its depth-dependent motion (as explained in the next
subsection). Moreover, the pixel-motion can also be due to the zoom variation in the camera,
which is also not considered in traditional BP based stereo approaches.
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6 BHAVSAR, RAJAGOPALAN: DEPTH ESTIMATION WITH A PRACTICAL CAMERA

In our framework, the data cost is formulated from the image generation process de-
scribed in the previous section. The prior cost is chosen to be a smoothness penalty that
constrains neighbouring nodes to accept similar labels. Moreover, we modulate the data cost
with a visibility term which is updated at each iteration. Furthermore, to improve the depth
estimate, we use a cue from color-image segmentation and plane-fitting, inspired from recent
works in the stereo vision [14, 17].

4.1 Data cost, prior cost and visibility consideration

To define the data cost we relate the image in the i’ view with that in the reference view.

The reference image is modeled as the shifted and blurred version of the ith image. Thus,
the relationship between the reference image and the ith image is given as
g1(n1,m2) = hyi(01,n1,m2) * gi(n1,n2) (10)

where

hyi(Gi,n1,n2) % gi(n1,n2) = Y hi(07,n1 — 61i(11),n2 — 62i(12)) - gi(61i(11), 62i(I2)) + Mi(my,m2) (11)
Il

Here, h,; signifies the relative blur kernel which corresponds to blur parameter 4/ (712 — Giz.

The symbol * denotes convolution. This blur parameter can be related to Z simply by subsi-
tuting the equation (7) for o7 and o;. The data cost is then defined as

D(ny,ny) = |g1(n1,n2) — hyi(0j,n1,n2) * gi(ny,n2)| (12)

At this point, we note that equation (11) is a convolution of a shifted blur kernel and a shifted
reference image. However, equation (3) does not involve a convolution since it models the
image generation under space-variant blur. Hence, equation (10) is an approximation to
the actual image generation model. We follow this approximation to make our data cost
amenable to the BP algorithm. The data cost in the BP algorithm, for a particular label at
a node, is defined as the cost incurred by that node for accepting a particular label. For
applications such as de-noising or stereo disparity estimation, the data cost at a particular
node involves only the label at that node and hence can be easily computed. However,
for applications involving space-variant blur, the data cost at a node also involves labels in
the neighbouring nodes. Since BP does not entertain a notion of current label estimates,
such a data cost which depends on neighbouring node labels cannot be defined. Defining
the data cost at a node as in equation (12), through a convolution approximation, makes it
dependent only on the label at that node. The convolution 4,;(0;,n1,n2) * g;(n1,n2) computes
an estimate g (n,n;) of the intensity value for a particular node (n,n;). Since this estimate
is computed for a single node (n;,n7), it can be compared with the observation at that node
g1(n1,n2). We can hence define the data cost at a single node thus allowing the cost to be
minimized in an efficient BP framework.

The prior cost enforces a smooth solution that constrains the neighbouring nodes to have
similar labels. At a more fundamental level, a smoothness constraint on depth actually man-
ifests from modeling the depth as a Markov random field having a joint Gibbs distribution.
However, an elaborate discussion on MRFs and Gibbs distribution is out of the scope of this
paper. We define the smoothness prior as a truncated absolute function which is stated as

Vp(l’ll ,nz,ml,l’l’lz) = min(|Z(n1,n2) —Z(ml,m2)|, T) (13)
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where, (n1,n) and (mj,m;) are neighbouring nodes in a 4-connected neighbourhood. The
truncation is carried out to avoid over-smoothing and allow discontinuities in the solution.

We incorporate the notion of visibility in the above data term. We introduce a binary
visibility function V. For a particular site (nj,nz) on the reference grid, Vi(n,ny) is 1 if
the pixel at that site is visible in the ith image and O if the pixel is occluded. The visibility
function V; modulates the datacost as

D(ny,nz) = Vi(ni,n2) - |g1(n1,n2) — hyi(03,n1,n2) % gi(ny,n2)| (14)

In the beginning, all pixels are considered visible. After the first iteration, the visibility
is computed by warping the current estimate of the depth in the ith view. As observed in
[15, 16] for the stereo problem, computing visibility in each iteration independently may not
yield a convergent solution [16]. Hence, we use the geo-consistency definition [15] to update
visibility temporally as

Vi(ni,na,t) = VP (ny,na,1) - Vi(ny,na,t — 1) (15)

where VW (ny ny,t) is the visibility computed with the current disparity estimate and ¢
denotes the iteration number.

4.2 Segmentation cue

Because we use the convolution approximation in defining our data cost, the estimation
process does not exactly follow the generation model of equation (3). This effect along with
the presence of occlusions and other noise-induced outliers can make the depth estimation
process error prone. Recently, the cue from image segmentation has shown great success
in improving stereo disparity estimation [14]. Inspired by [14], we also incorporate the
segmentation cue in our estimation process.

Prior to starting the estimation, we color-segment the reference image using the mean-
shift algorithm. We also compute a reliability map to classify the pixels as reliable or not.
To form this reliability map, we compute the top two labels which provide the least two data
costs. Calling these costs as C; and C,, we compute a confidence measure

_ G -G

C
G

(16)
This measure is similar to that defined in [14]. However, we note that in [14] the costs C
and C, are computed using a correlation volume. However, to also account for the blurring
effect while computing the confidence, we use the data cost itself. If the confidence measure
is above a particular threshold cy then we define that pixel to be a reliable pixel. After this
initial processing, we move on to the actual estimation process.

The first BP iteration is run without using the segmentation cue. We then compute a
(partially) plane-fitted depth map that uses the current estimate, the segmented image and
the reliability map. The plane computation for each segment is carried out via the robust
RANSAC approach, using only reliable pixels in that segment. The plane-fitted depth map
is computed as follows. If the fraction of reliable pixels 7 in a segment is above a threshold,
then the reliable pixels are assigned their own depth values and only the unreliable pixels are
assigned the plane-fitted depth values. If this is not so, then all the pixels in the segment are
assigned the plane-fitted depth values. If the segment itself is very small (<sy pixels), then
all pixels are assigned the median of the current depth labels for that segment.
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8 BHAVSAR, RAJAGOPALAN: DEPTH ESTIMATION WITH A PRACTICAL CAMERA

Once the plane-fitted depth map is computed as explained above, we feed it back to the
iteration process to regularize the data term. Thus, the new data term is as follows

D(ni,np) =V (ni,n2) - |g1(n1,n2) — hyi(03,n1,n2) % gi(n1,na)| +w-|Z(ni,n2) — Z,(n1,n2)| (17)

where Z,, denotes the plane-fitted depth map and the regularization weight w is binary and is
0 if the pixel is reliable pixel and 1 if it is unreliable. The second term in the above equation
regularizes the unreliable depth estimate such that these estimates do not deviate from the
plane-fitted depth map. We use this data term in subsequent iterations after the first one.

5 Results

We classify our experiments into synthetic, semi-synthetic and real. The synthetic and the
semi-synthetic experiments were carried out on Middlebury stereo database [11]. For the
synthetic experiments, we created the warped and blurred observations from a focused im-
age and depth map. For the semi-synthetic case, we used the independent focused stereo
observations and blurred them synthetically using the depth map, while maintaining the blur,
motion and depth relationships. In both these cases we blur each image in a space-variant
way using (3), while during estimation we use the data cost of (12). In real experiments, we
used the Olympus C-5050 camera. In all experiments 7 in the prior cost is chosen as half of
the maximum depth label. The values of ¢y, sy and ry for segmentation, are chosen as 0.2,
300 and 0.7, respectively. We use depth labels in steps of 0.5.

() (b) ()
Figure 2: Synthetic experiment: Translation and aperture variation. (a) The reference blurred
observation (c,d) Ground-truth and estimated depth maps, respectively.

We start with a synthetic experiment with 7, translation and aperture variation. The pa-
rameters were chosen such that the maximum disparity was 20 pixels and the relative blur
parameter ranged from 0.8 to 2.2. Fig. 2(a) shows the reference image. Figs. 2(b) and (c),
respectively, show the ground truth and the estimated depth map. Note that the edges are
well localized and the gradual disparity variation is also captured.

We next show another synthetic experiment that involves the effects of zooming (change
in v), variation in aperture, and #, translation. We show two images in Figs. 3(a) and (b) to
highlight the zooming and the translation effect. The scale between the images is 0.9 and the
translation and the blurring is similar to that in the above example. The ground truth and the
estimated depth are shown in Figs. 3(c) and (d), respectively. Again, note that the estimated
depth map both in terms of localization and depth variations is very close to the ground-truth.
This demonstrates that our approach can handle zooming effects induced while varying the
defocus. This example also shows the ability of our algorithm to work with low-textured
scenes (an ability uncommon to algorithms that compute depth from defocus blur).

We now show a semi-synthetic result in 4. This involves variation in aperture and ¢,
translation, wherein the focussed images themselves involve the translation. The pair that
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(b) (©) d
Figure 3: Synthetic experiment: (a,b) Observations with tranlsation, blur and zoom. (c,d)
Ground-truth and estimated depth maps, respectively.

we chose from the dataset had a maximum disparity of 36 pixels. The hypothetical camera
parameters are chosen such that the maximum relative blur is about 2.5. Fig. 4(a) shows
the blurred reference image and Figs. 4(b) and (c) show the ground truth and the estimated
depth map, respectively. In the background window region, we miss some very fine details.
However, at other places (e.g. the bottle, the cloth at the bottom and the pillow at the right),
the discontinuities and gradual depth variations are recovered quite well.

(a)

(b) ()
Figure 4: Semi synthetic experiment: Translation and aperture variation. (a) The reference
blurred observation (b) Ground-truth depth map. (c) Estimated depth maps

We next demonstrate results on some real data that we captured using the Olympus C-
5050 camera. We used the camera in macro mode, with the scene distance range being 3
to 15 cm. Figs. 5(a,b) show two images which involved ¢, translation and variation in the
aperture setting. The recovered depth map is shown in 5(c) for the reference frame of Fig.
5. Note that the discontinuity localization is accurate and fine variations (e.g. on the Pisa
tower-model and on the circuit board components) are also captured.

(b) (©
Figure 5: Real experiment. (a,b) ¢, translated mages with with and aperture variation. (c)
Estimated depth map.

The next example (Fig. 6) demonstrates the efficacy of the framework to handle low-
textured surfaces, as well as detailed surfaces in the same image. For this example, we have
a multiple-image configuration involving ¢, and ¢, translations and variation r. In Figs. 6(a-c)
we show 3 of the 4 observations used, with Fig. 6(c) as the reference image. Note that the
objects in Fig. 6(b), appear closer due to the ¢, translation. One can appreciate the low texture
on the clay ball and the details on Pisa tower model. The estimated depth map (Fig. 6(d))
faithfully captures the gradual depth variations and the discontinuities of the low-textured
object as well as the fine variations on the Pisa tower model.
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Figure 6: Real experiment. (a-c) Images with #, and ¢, translation with change in aperture.
(d) Estimated depth map.

6

Conclusion

We proposed a depth estimation framework that relates the camera parameters, camera mo-
tion and depth cues. We outlined practical cases where such a framework will become impor-
tant. We formulated the estimation in a BP framework that handles both motion and defocus
blur. Moreover, we incorporated the notion of visibility and used the segmentation cue in the
estimation. Our results show the effectiveness of the framework to handle discontinuities,
low-textured regions and fine depth variations. The work can be further extended so as to
include aspects such as camera rotations, auto-calibration, image restoration etc.
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