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Speech is a verbal means of communication that is intrinsically bimodal:
the audio signal is produced by complex mouth and corporal articulations
that form the basic vocal tone into specific, decodable sounds. Both the
audible and visible contents of speech carry pertinent information about
what is being conveyed.

The motivation behind this work is to derive a synchrony measure
between the visual contents of a monologue and its corresponding audio
signal. While most of the work in the literature focus on a macro-level
analysis of synchrony [1, 3], such as speaker localization and identity ver-
ification, we are interested in detecting anatomical features of a speaker
that demonstrate synchrony between the sounds of speech (onset, offset)
and the visible movements of the face and its features.

We are applying this work to a set of monologue video stimuli that
are played to both typically-developing infants and infants who are at risk
for autism between the ages of 6 and 10 months. Each monologue is
represented by a synchronous (sync) version (e.g. the audio and visual
signals are synchronized) and an asynchronous (async) version (e.g. the
audio signal is time-shifted with respect to the visual signal).

In this paper, we present an audio-visual synchrony algorithm that
employs a Gaussian mutual information method to evaluate the synchrony
between vocal pitch and facial landmark trajectories. Pitch is an impor-
tant feature for detecting the emotional state of a speaker. It provides
discernment on the irony, sarcasm, emphasis, contrast and focus of an ut-
terance, which may not be encoded by grammar. The Active Shape Model
(ASM) has been widely used for reliably tracking facial landmarks across
a sequence of video frames.

In information theory, the mutual information, M(X ,Y ), between two
Gaussian random variables, X and Y , is a quantity that measures the mu-
tual dependence of the two variables. In the case that the random vari-
ables are discrete, it is defined as M (X ,Y )= 0.5 ·log

(|ΣX | · |ΣY |/|ΣX ,Y |)
where Σ denotes the covariance matrix and |·| is the determinant. We use
this measure of Gaussian mutual information to compute the temporal
contingency between the visual and audio features.

The Active Shape Model, introduced by Cootes et al. [2], is a statis-
tical approach for shape modeling and feature extraction. It represents a
target structure by a parameterized statistical shape model obtained from
training. The location of n facial landmarks are annotated on a set of
training images by a human expert. This set of landmarks is represented
by a vector X = {(xi,yi)}n

i=1 where xi and yi are the coordinates of the
ith landmark. Then, by analyzing the variations in shape over the training
set, a model is built which can represent these variations.

In this work, the shape model is comprised of 83 landmarks that cor-
respond to salient features on the human face. For each landmark, The
absolute horizontal and vertical displacement between adjacent frames
are used as the two visual features for computing synchrony.

We employ a frequency domain approach described in [4] for deter-
mining the pitch of each temporal set of audio samples, A(tk). Firstly, the
short-term spectrum function, A( f ), is obtained by applying the Fourier
transform to A(tk). Suppose that the fundamental frequency is denoted by
f0, then the sum of the harmonic amplitudes is defined as SH = ∑N

n=1 A(n f0),
where N is the number of harmonics to be considered. If only the sub-
harmonic frequencies are considered, equalling one half of f0, then the
sum of subharmonic amplitudes is given as SS = ∑N

n=1 A
((

n−1
/

2
)

f0
)
.

The subharmonic-to-harmonic ratio (SHR), given by SHR = SS
/

SH, is
the amplitude ratio between subharmonics and harmonics. We utilize the

absolute difference between the pitch estimates of adjacent audio bins as
the audio feature.

The human visual system is capable of distinguishing rigid and non-
rigid motion of an articulator during speech. In an attempt to emulate this
process, we separate rigid and non-rigid motion and compute the syn-
chrony attributed to each. Non-rigid and rigid motion are separated using
pose normalization. To obtain the non-rigid motion, the fitted landmarks
of each video frame are registered to the landmarks of the reference frame
(first frame) using Procrustes alignment.

The acquired raw synchrony estimates generally contain false-positive
synchrony values due to over-sensitivity. We propose a postprocessing
method that filters out spurious synchrony by accounting for the onset,
offset, and mean synchrony energy of audio-visual events. The synchrony
filtering is performed by classifying each audio event (e.g. word, phrase)
of both the sync and async versions of the video clip as being either syn-
chronized or asynchronized with its coinciding visual events (e.g. the
magnitude displacement of a facial landmark). We perform synchrony
filtering separately for each facial landmark. That is, the classification of
an audio event is determined on a per facial landmark basis. If an au-
dio event is classified as being synchronized with the coinciding visual
events of a given facial landmark, then the synchrony values of the facial
landmark are retained, otherwise they are discarded.

We conducted a series of experiments to evaluate the performance of
the system described above. The experiments are conducted on 20 pairs of
monologue video clips where each pair consists of a sync and async ver-
sion of the video clip with identical visual content. In each video clip, the
speaker is articulating a set of phrases using child-directed speech. For
each pair of video clips, the difference in the amount of synchrony de-
tected between the sync and async versions of the video clip is computed.
The amount of synchrony detected in the sync video clip is compared
against that of the async video clip, where the offset of the audio signal in
the async video clip is varied.

The results indicate that the proposed method is capable of detecting a
greater amount of synchrony in the sync video clip than in its async coun-
terpart across 97.2% of the experimental trials. The results also illustrate
that the amount of synchrony detected for the rigid motion generally sur-
mounts that of the non-rigid motion and the combined non-rigid + rigid
motion . Although the result of this motion analysis is somewhat surpris-
ing, it is understandable because phrase/words that are communicated us-
ing child-directed speech are often accompanied by an exaggerated level
of looming (rigid) motion.
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