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Abstract

In this paper we propose an algorithm for contour-based object detection in cluttered
images. Contour of an object shape is approximated as a set of line segments and ob-
ject detection is framed as matching contour segments of an image (i.e.,an edge image)
to a boundary model of an object (i.e., a line drawing). Local shape is abstracted as a
group of k-adjacent segments. We use a multi-level shape description (with different k’s)
to capture complexity variations in local shape. Between images, shape descriptors are
matched to give inter-shape correspondences and within images the underlying segment
grouping enforces intra-shape contextual constraints. We use an efficient relaxation la-
beling approach that integrates these shape cues to qualify a contour match. To this end,
we propose a novel framework that solves the problem of object detection as a contour
segments correspondence problem. We then demonstrate the efficacy of the method for
detecting various objects in cluttered images by comparing them to simple line drawings.

1 Introduction

Shape-based methods are a natural choice for color and texture invariant object detection.
In recent years, a large body of research has focused on contour based techniques for shape
representation. Most of the methods can be broadly classified as point-based approaches eg.,
[1] or boundary-curve based approaches eg., [2, 7].

In general, curve based shape representation has a natural advantage over point based ap-
proaches in terms of exploiting locality. This is because spatial neighborhood of a point is
always limited to a localized region around the point, in terms of radius, patch size etc. An
arrangement of connected curves, on the other hand, may emanate from a spatially localized
region or it can be a spatially extended set of long segments associated only at their termina-
tion points. Hence, a set of boundary curves naturally handles scale variation better than a
set of points in representing shape.

We perform object detection by framing it as a correspondence problem between contours
segments in an input image and an object model. The model is a line drawing that consists
of a small number of strokes defining the boundary contour of an object. In the input image,
we identify an instance of the object category in a cluttered environment by searching for
contour segments in a similar topology as that of the model. Hence, contour segments in
the input image that match those of the line drawing delineate the object shape out of the
cluttered background.
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Figure 1: Overview of our approach. Left: Input image. (b) Left Center: Line segments (in white)
extracted to form an edge image. (c)Right Center: Contour segments detected by inter-shape matching
only (d)Right: Contour segments detected by combining inter-shape correspondences and and intra-
shape contextual constraints. This is the output of our framework.

An important consideration in any shape-based method, including ours, is the extent of
spatial context considered in the representation. A single global representation of shape is
usually based on medial axis transformation [13] or a polynomial curve that defines the
entire contour [10]. Such a representation provides a succinct description of the object in an
unified model but is less repeatable under intra-class variability. On the other hand, groups
of contour points [1], or curves [2, 7] encode local object parts at various scales in the image.
In this case, the confidence measure for a reliable detection has to be aggregated spatially,
but has the advantage of allowing more flexibility among object parts.

Our framework follows the latter approach; we approximate object contours using line-
segments and groups of line segments are encoded by a descriptor. A multi-level description
is used to capture local complexities in shape. Inter-shape distances between descriptors
induce correspondences between contours.

In part-based representations, background parts often hallucinate [14] as objects and
produce wrong correspondences. Therefore, a crucial step involves searching for object
parts that form a coherent whole. The overall object is then, a group of contour segments
that are spatially and structurally related to each other.

Our framework is summarized as follows. First, the input image is processed to extract
and model local shape using the Contour Segment Network [2] model (Figure 1(a), (b)).
We propose a multi-level shape description that handles local shapes of varied complexities
and accumulate evidence across multiple layers of shape abstraction. See section 2. Next,
to match contours between image and model, we define two metrics: (a) distance between
the model and image contours (termed as inter-shape correspondence) to find likely can-
didates for a match. This is achieved by solving for one-to-one correspondences 2.2 and
(b) spatial connectivities among contours within each image (termed as intra-shape contex-
tual constraints) to find a single coherent whole that matches the model 2.3. To summarize,
we exploit inter-shape correspondences and intra-shape grouping cues to identify a subset
of connected line segments in the image that match the object model. We achieve this by
means of a relaxation labeling technique. The results are demonstrated in 4, followed by our
conclusion in 5.

Background and Related Work:

In our work, we frame object detection as contour segment matching between input and
model image. The matches are established by integrating inter-shape correspondences and
intra-shape grouping. Our method uses the shape description formulated in Contour Seg-
ment Network (CSN) [2] model. In their work, objects are detected by finding paths through
the network resembling the model. The concept of object detection by contour matching has
been previously applied in [14], in which shape contexts of points are extended to represent
contour contexts. Continuity is included as curvature and distance measures on shape con-
texts in [11] and as centroid-boosting on k-point groups in [8]. Most of the above mentioned
methods robustify shape matching by incorporating spatial constraints, that is solved by it-
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erative approaches. In [14], contour sets are matched by 2-stage linear programming. [3]
uses MCMC based labeling followed by contour based labeling. A matrix framework that
combines the inter and intra-image cues is proposed in [12]. Cue combination is interpreted
as structural graph matching and solved using EM and spectral techniques in [6]. Our cue
integration method is similar in principle to the probabilistic Relaxation Labeling approach
proposed in [5].

Our shape representation is based on line segments that are more robust and sparse as
compared to point based approaches such as [14]. Other approaches that use CSN, like [2]
and [8], use an empirically determined single level of shape abstraction. Moreover, the con-
tour correspondences are built over individual line segment similarities. Our method differs
from its predecessors in (1) We use a multi-level shape description to capture complexities of
different object parts (2) We match groups of line segments across images for discriminative
matches and use a novel mechanism to induce contour correspondences and (3) We follow
a two-step intuitive approach for object detection: inter-shape correpondences are used to
perform a dense search in the input image followed by a sparse, local search for the best
matching candidate. We integrate these shape cues for contour segment matching in an it-
erative framework. Our algorithm is less vulnerable to background clutter, more adaptive to
different complexities in shape and yields much higher detection rate than its predecessors.
To the best of our knowledge, this is the first work that frames and solves the problem of
object detection as a contour segments correspondence problem.

2 Structure Description and Matching

In our algorithm, an image is represented by contour segments terminating at points of high
curvature (e.g., an edge image, see Figure 1(b)). We adopt the Contour Segment Network
(CSN) [2] formulation to describe local shape. In CSN, contour segments are grouped based
on spatial connectivity. An ordering of the segments is then enforced and a numerical de-
scriptor encodes the structure as a vector with following attributes - (a) The relative dis-
tances between mid points of line segments (r;, where r; = ||p; — pil|,i =2---k—1), (b)
Line segment orientations (6;, where i = 1---k) and (c) Length of the individual line seg-
ments, (I;, where i = 1---k). The relative distances r; and the segment lengths /; are normal-
ized by the distance between the farthest midpoints, making the descriptor scale-invariant.

\
| \
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Figure 2: This figure shows the matching at different structural supports, from left to right, k =2,k =
3 and k = 4. Each column has an input image and four instances of the model. Each instance shows a
structure color-coded with the corresponding match in the image. Structural matches may arise both
from the background and the object.
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2.1 Multi-level Structure Description

We define a structure as a group of connected line segments encoded by a descriptor. Struc-
tural support is then, the number of line segments in a structure. An important consideration
for local shape abstraction is the choice of the structural support that can best represent the
complexities of an entire object shape. For example, a swan’s beak or a bitten side of an
apple can be illustrated accurately by a pair (k = 2 in CSN) of segments denoting a single
point of high curvature. On the other hand, the curved side of an apple with continuous
curvature variation is better represented by several contour segments that approximate the
sampled curvature change. In general, there is no single value of k that can describe an entire
shape effectively (as also noted in [2] and [8]).

A natural way to solve this scalability issue is to represent structures at multiple structural
supports and filter out the irrelevant supports in a later process. Based on this idea, we
generate and describe multi-support structures at each segment. Specifically, let a,b--- and
a,f,--- be segments in the input (D) and model (M) images. We generate structures S% =
Ura{a} and S¥, = Uy {a} at k = 2,3,4 and compute associated descriptors.

2.2 Inter-shape correspondences.

Our goal is to match contour segments between input and model images for which we require
an inter-segment distance measure. The CSN apparatus provides a way to compare struc-
tures, i.e., groups of contour segments. Specifically, the distance between two k-structures
in input and model is the Euclidean distance between their descriptors. In what follows, we
describe a heuristic to compute inter-segment distances from the inter-structure distances.

An inter-structure distance d’gD’ s, 1s a distance between two sets of k segments. By slight
twist of notation, we convert this distance to its segment-centric form, i.e., distance between
k sets of two segments = d(2a7 @) (b B) ek Le., each inter-structure distance d1§D. s,, 1s attributed
to k ordered, pairwise, inter-segment distances with each dyq = ds, 5,,, Where segment a €
Sp, o € Sy.

It has been observed in [2] that each segment in an image is typically connected to two
to three other segments. Therefore, each segment can be a member of several structures. As
each structure attributes a distance measure to its members, a pair of segments in two images
may be associated by multiple inter-segment distances. These observations are illustrated in
the Figure 3 in which three different d,, values exist at k = 3.

To choose a single, most suitable inter-segment distance, we observe the following. Given
an appropriate k sized structure k-S in the input image, where all its member segments belong
to the object shape, a line segment in k-S will be in perfect correspondence with a model
segment. Then, out of all inter-structure distances attributed to this segment, the one induced
by k-S will be the minimum. Hence, to find its distance from the model, we apply a minimum
filter across all inter-structure distances and all k to compute the distance that is induced by
the best matching structure. Note that, if the segment indeed belongs to the object, this
distance will be smaller than if it does not. Formally, then:

dag. = mingmin; j(d (S}, S5 rla €, Sip,a € S5 1)) 1)

A graph based interpretation: The relations between image and model contour seg-
ments can be naturally encoded in a graphical framework. We express the input image as a
graph and its contour segments as vertices Vp. Similarly, model image has vertices Vj;. The
inter-segment distances d,, as computed in equation 1 are normalized and modified into
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Figure 3: Conversion of inter-structure distance to inter-segment distance. The structures are marked

Sf ¢ With inter-structure distances D;. The inter-segment distance is the minimum inter-structure dis-
tance. The structural grouping is translated to a clique to enforce intra-shape constraints.

probability scores by applying a Gaussian kernel. We generate a probabilitity matrix Q;. as
|Vp|X |Vy| adjacency matrix (Equation 2), the elements of which express the initial likeli-
hood of the segment matches. These probabilities depict the inter-shape correspondences
which are refined by including intra-shape constraints as described next.

Qic := gla, o) = ¢ % ©)

2.3 Intra-shape Contextual Constraints.

Part-based representations model local shape, ignoring the spatial context of those parts. As
aresult, background parts often hallucinate as objects and create wrong matches. To mitigate
erroneous detections, we include contextual constraints and search for a connected, coherent
whole within the input.

We represent the contextual constraints of contour segments by the connectivities that
underlie contour grouping in the formation of structures. We define intra-shape adjacency
matrices in which two nodes in a graph are connected if their representative contour segments
are members of a common structure.

Dy = 1,if 38K (a € S5, b € 55) Mg = 1,if 38§, (a € Siy, B € Siy)
= 0, otherwise = 0, otherwise 3)
Specifically, the intra-shape adjacency matrices for input (D) and model (Myp) are

binary matrices where a pairwise relation of 1 implies that the two contour segments are
connected and are within the spatial context of one another (Equation 3).

Figure 4: The first image shows the contour matches found using inter-shape correspondences only.
These matches are enhanced by including contextual constraints that drive the matches towards a con-
nected set of contour segments that match strongly with the model in the second image.
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3 Combining Intra and Inter shape Cues.

The end goal of object detection is to find a coherent whole: a set of connected contour
segments in the input image that matches best with the model segments. We achieve this by
integrating inter-shape correspondences with intra-shape groupings.

Formally, we seek an optimal match Vp — V) such that a subset of input image segments
A ={a,b,---} are assigned to model segments A = {a, 3,---}. Moreover, the segments
in set A should be connected via intra-shape adjacencies either directly, i.e., D, = 1 or
indirectly, Dye, = 1, D¢y ¢, = 1, -++, D¢, , = 1. The unmatched contour segments (and the
background) in input image match dummy segments in V),. These assignments can be easily
expressed in a matrix framework. Let M be a binary matrix of size |Vp|X|Vy| with each
element defined as:

M:=myg=1,a— &

= 0, otherwise

This implies that a match between contour segment a and «, represented as an assignment
a — o is denoted by weight 1 in the assignment matrix. To induce a one-to-one correspon-
dence between the nodes Vp and Vj; we find the optimal assignment M.

M= argmaxMZZQ(a, )Ry, 4)

where Q := Q(a, @) is the probability matrix for this assignment. If this probability matrix
is known, the assignment matrix M can be calculated by maximum weighted graph matching.
The initial probability matrix is based on inter-shape correspondences d,q. To find a single
connected entity, we need to softly bias the matches towards a group of connected contour
segments. This can be achieved by integrating the inter-shape matches with intra-shape
grouping in an iterative framework as described below.

Matching via Relaxation Labeling
To compute the optimal assigment M we see that the probabilities and assigments are interde-
pendent functions. I.e., optimal assignment depends on the probabilities but the probabilities
themselves are also influenced by a particular assignment. Thus the optimization problem
needs to be solved iteratively. Our iterative approach is based on the relaxation labeling
framework for contextual graph matching [5].

We break the problem into a two-step iterative approach. In the first step, we find an as-
signment M; based on the probabilities Q; between the nodes of input and model graph. The
intra-shape cues are ignored at this stage and we formulate it as a bipartite graph matching
which is solved using the polynomial-time Hungarian Algorithm. In the second step, we
recalculate the probability matrix O, based on a support function. This is calculated as
a function of matches M; in the first step and the contextual cues expressed as intra-shape
adjacency matrices D, and Myg. The iteration continues till a stable local point is reached
and the corresponding M is the optimal assignment that identifies the object contours in the
input image. The details of the algorithm are explained as follows.

The relaxation procedure starts by assigning to the data nodes the initial probabilities
Qo = Qj. based on inter-contour distances as calculated in Equation 2. This induces a match-
ing denoted by My, the initial labeling. The relaxation rule is then:
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the object contour is completely undetected for k = 3 and 4. In the bottom figure, even though all
the k’s approximately detect the same contours, higher support favors better detection. In general, the
performance is best when information is combined over all the £’s (column d).
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where Q' is the probability matrix and the support function S” weighs the probabilities
according to the intra-shape contextual constraints.

Calculating the support function: To qualify as an object contour, a segment in an
input should not only have a high inter-shape correspondence with the model but should also
lie within the context of an object. In other words, a segment can qualify as a match if it is
connected to segments that also match to the object. The role of the relaxation based iteration
is to bias the matches towards the strongest candidate that fulfils the inter- and intra-shape
constraints. The support function is used to induce this bias in the probability matrix.

We employ an indicator function IZ:E‘ such that

Qt+1 (5)

Igjg Da,Mypgmyp = 1,if (a,b) € Ep, (o, B) € Ey,a — a,b—
= 0,0therwise

The above states that the indicator value is unity if (1) b is connected to a and (2) is
matched to node 8 which is connected to « i.e., the label assignment of a. When either of
these two conditions are not met, the quantity is zero. Note that Mg refers to the intra-shape
adjacency matrix for the model graph whereas m;g is an element of the assignment matrix
M.

We define support function at a node as the joint probability of the nodes that are con-
nected to it. Assuming independence, this joint probability is the product of the individual
probabilities. Thus, the support function distribution can be considered as a log-normal dis-
tribution which is normalized by finding the n'" root of the product (the geometric mean),
where n =3, Y51} I“_’O‘ the number of nodes connected to a.

1/n
{HHQ (.B) z:;;‘} ©)
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] | Apple Logo [ Bottle | Swan | Giraffe
k=2 68.9 59.6 83.3 75.8
k=3 84.4 53.2 88.9 80.4
k=4 88.9 85.1 86.1 68.9
Multi-level 93.3 91.5 94.0 89.6
in [2] 57.0 90.0 75.0 63.0

. Table 1: Detection rates at 0.30 FPPI.
4 Experimental Results

We evaluate our detection algorithm on the ETHZ shape dataset, that contains object cate-
gories at various scales, illumination and with large cluttered backgrounds. The method is
tested on 4 shape classes namely, Apple logo (45 images), bottles (47 images), giraffe (87
images) and swans (36 images). The object model, which is also in the dataset, is a single
line drawing of each shape in the test category.

We choose 3 levels of structural support at k = 2,3 and 4. During relaxation labeling,
we iterate between maximum weighted matching and updation of probability scores till the
solution remains unchanged over two consecutive iterations. This signals a stable solution.
The contour segments that match to the model at this stage are labeled as object contours.
To localize the object, we compute the extremeties of the largest set of connected, matched
contours and frame them with a bounding box. Any other set is counted as a false positive,
except in images with multiple instances of the same object, in which they are ignored. The
output of this system is a bounding box and the detected contours.

Detection rate/False Positives Per Image (DR/FPPI) is used for quantitative evaluation. A
detection is considered correct if the ground-truth overlaps the detected bounding box over
50% of the region. However, if the bounding box exceeds the ground-truth by 20%, the
detection is incorrect.

We compared our results with previous work [2] as shown in Table 1. The detection rates
at 0.30 FPPI averaged over each dataset is shown in the table. The results illustrate that our
algorithm performs remarkably well on all the four object classes, with an average detection
rate of 92.17%. The Apple logo category is particularly interesting because this dataset has
maximum clutter and variations in images. Our method outperformes the preceding work
by a huge margin of 36%. To show our performance in localizing the actual contours of the
shape, we show a few examples in Figure 6. We highlight the two important aspects of our
algorithm, that lead to this improved performance.

First, to emphasize the importance of variable structural support, we display the results
obtained at different k (see Figure 5). It is interesting to note that the detection of Apple logo
improves significantly at higher structural support, whereas the swan and giraffe categories
are better detected at k = 3. One reason that might explain this anomaly is that natural
shapes of animal images are more deformable than the Apple which is a brand logo and
hence is mostly consistent across images. Smaller, simpler structures are more likely to
match correctly in natural shapes that longer, more complex structures. Most of the previous
works on CSN have considered a single spatial support in their shape representations (k =
2in [2]and and k = 3 in [8]). By considering different structural supports k, we obtain
the best possible match across three levels of representation. Due to this, the results from
multiple structural supports clearly supercedes the individual supports for all the four classes.

Second, contextual constraints help robustify the detection and minimize the detection
of false contour segments. As noted in [14], background contours often hallucinate as ob-
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Figure 6: Contour detection results.

jects and create wrong matches. Inclusion of contextual constraints leads to detection of a
single (or a small number of) connected candidate(s) that match best with the model. After
including contextual constraints, the number of correctly detected contours that belong to
the object increased by 34% over the entire dataset. Thus, even without integrating multiple
levels of structural support we obtain better detection rates than [2] (see first three rows of
table 1).

5 Conclusions

Line segment matching has been used before for stereo analysis and image registration [4, 9].
In this paper we proposed a novel framework to use line-segment matching as a method for
object detection and localization in a cluttered image. Our approach is simple and intuitive;
a line drawing is used an object model and contour segments in an input image that share
similar structure and context as model contours are deemed as the detected object. We show
that contour line segments are able to represent local structures of deformable shapes effi-
ciently when used in a multi-level framework. Inter and intra shape cues are exploited to
delineate a single connected set of contours that matches closely to the model. Our method
outperforms previous work in object detection and can be also be used to localize the object
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contour in an image.
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