
SIMONYAN, VATOLIN: EDI IN A BAYESIAN FRAMEWORK 1

Edge-Directed Interpolation
in a Bayesian Framework

Karen Simonyan
simonyan@graphics.cs.msu.ru

Graphics & Media Lab
Lomonosov Moscow State University
Moscow, Russia

Dmitriy Vatolin
dmitriy@yuvsoft.com

YUVsoft Corp.
Moscow, Russia

Abstract

In this paper we present a novel framework for Edge-Directed Interpolation (EDI) of
still images. The problem is treated as finding maximum a posteriori estimates of each
interpolated pixel type and intensity value. The pixel type may be one of the pre-defined
edge directions or "non-edge". Instead of the separate steps of edge orientation detec-
tion and intensity interpolation, maximizing the joint probability density function of type
and intensity provides a better fit to the local image structure. Such a technique allows
an effective discrimination between edges and non-edges (uniform areas and texture),
thus leading to the suppression of artifacts which are common to existing EDI meth-
ods. Objective and subjective comparisons with conventional EDI methods corroborate
the advantages of the proposed one. Moreover, the locality and the low computational
complexity of the method make it suitable for a hardware implementation.

1 Introduction

The problem of image interpolation is one of the most thoroughly developed in the area of
multimedia processing. The reason is that image upscaling is an important part of many im-
age and video processing algorithms, e.g. super-resolution [9], and a distinct task as well. A
special attention has been paid to the problem since the emergence of High Definition Tele-
vision (HDTV). Since most video content is still lower resolution, there is a strong demand
of fast high-quality upscaling algorithms. Linear interpolation methods suffer from aliasing
and Hibbs effect, and they fail to provide artifacts-free enlargement of edges. This has led to
a plethora of edge-oriented upscaling techniques aimed at providing superior edge process-
ing quality. However, edge-directed processing of textured areas results in strong artifacts,
making the discrimination between edges and texture an important task as well.

In this paper we propose a Bayesian framework for Edge-Directed Interpolation (EDI)
which allows a simultaneous search for pixel type and intensity which maximize the joint
Probability Density Function (PDF). The pixel type denotes if the pixel lies on an edge of
a certain direction or on a non-edge. The search is performed independently for each pixel
of a High Resolution (HR) frame, which means that the method is local and suits well for
a hardware implementation. As objective and subjective comparisons show, the algorithm
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outperforms conventional EDI approaches, providing not only high-quality edges upscaling,
but artifacts-free texture interpolation as well.

The rest of the paper is organized as follows. In Section 2 a review of the related work is
given. In Section 3 the proposed algorithm is described. Experimental results are presented
in Section 4. Section 5 concludes the paper and points possible directions of the future
research.

2 Related work

Non-linear image enlargement techniques can be divided into two groups according to the
edge processing strategy which can be implicit or explicit.

2.1 Implicit edge processing

Such methods do not perform explicit edge detection; instead of that, inner parameters adap-
tively change depending on the local image structure. Therefore, the interpolation is done
along an edge if it is present. One of the possible approaches to the implicit edge processing
is making a linear interpolation method (e.g. bilinear or bicubic) dependent on the local in-
tensity variations. Ramponi [7] proposed to use the warped distance to the interpolated pixel
instead of a regular one, thus modifying the one-dimensional kernel of a separable interpo-
lation filter. The computational complexity of the method remains low, but the upscaling
quality of edges oriented neither horizontally nor vertically is poor. A certain improvement
was brought by Hwang and Lee [3], who suggested to modify the two-dimensional interpo-
lation kernel by introducing the local gradient features. However, the necessity to adjust a
sharpness parameter for each image and the lack of a special textured area processing form
the drawbacks of the algorithm. Another approach, NEDI, was proposed by Li and Orchard
in [5]. The optimal interpolation in terms of the mean squared error was suggested under the
assumption of the local intensity covariance being constant for both Low Resolution (LR)
and HR images. The method succeeds in upscaling edges of different orientations, but in
the areas of texture and clutter the assumption made becomes false, leading to unnatural
images and even strong artifacts. Moreover, the computational complexity of NEDI makes
it inappropriate for the real-time processing. Recently the mathematical apparatus of kernel
regression was applied by Takeda et al. [10] to various image processing problems includ-
ing interpolation. The usage of a special steering kernel which adjusts its parameters to edge
orientation and strength allowed high-quality edges upscaling. Nevertheless, from our exper-
iments (see Section 4) the resulting HR image in whole is overblurred; furthermore, artifacts
appear in some cases. Again, the amount of computations required makes it difficult to adapt
the method for fast processing.

Unlike local methods mentioned above, global upscaling methods impose constraints
on the whole resulting image. Schultz and Stevenson [8] used Bayesian reasoning with
discontinuity-preserving prior for finding Maximum A Posteriori (MAP) estimate of HR
image given an LR one. In [2] Freeman et al. proposed an example-based image magni-
fication method. They argued that the relationship between medium- and high-frequency
image patches can be exploited to add high-frequency details to the enlarged image. A spe-
cial database was introduced to store patch correspondences. To stitch the patches together a
Markov Random Field (MRF) was used. The algorithm performance crucially depends on a
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database used: it must be large enough to ensure proper handling of different LR input. Both
global methods mentioned above exhibit enormous computational complexity.

2.2 Explicit edge processing

An algorithm belonging to this group can be subdivided into two blocks: edge detection and
edge-oriented interpolation. Such methods often limit the set of possible edge directions,
aiming at speed-up and robustness. Muresan [6] suggested to consider only four possible
edge directions: 0◦, 45◦, 90◦, and 135◦ relative to the horizontal axe. The proper direction
is determined via the analysis of pixel intensity differences in the possible edge directions.
Linear interpolation is then performed along the detected edge orientation. Though fast,
the algorithm performs poorly in the case of edges not aligned with the aforementioned
directions. Additionally, specific curly artifacts appear in the textured areas. A more flexible
method was proposed by Wang and Ward in [11]. At first, the intensity gradient values are
calculated for HR pixels via the bilinear interpolation from LR pixel gradients. Secondly,
interpolation is done using a 4-point kernel oriented in the edge direction (orthogonal to the
HR pixel gradient). The set of possible edges is limited to 20 directions between 0◦ and
180◦. A special processing is also held for ridge pixels and edges with a high curvature. The
main drawback of the method is the instability of an HR pixel gradient calculation: in the
cluttered areas the bilinear interpolation produces erroneous results. In [4] Li and Nguyen
introduced an MRF with cliques aligned with 16 pre-defined possible edge directions. Edge
consistency in the upscaled image was ensured via special potential functions which take
into account both edge strength and interpolated pixel intensity. A special processing was
suggested to detect non-edge pixels. To increase the processing speed, a small candidate
set was introduced for each HR pixel, and a single-pass suboptimal search procedure was
offered. According to our experiments (see Section 4), the main drawback of the approach
is that minimizing the sum of potentials we get an intensity value that to a certain degree fits
all the directions at the same time. This leads to specific aliasing effect near some edges.

3 Proposed EDI algorithm

3.1 The proposed framework: a general case

We suggest applying a pixelwise Bayesian reasoning for the simultaneous HR pixel type
detection and its intensity interpolation. The pixel type can be either an index of one of the
pre-defined edge orientations or "non-edge". The former is for the pixels lying on edges;
the number of allowed orientations in the range [0◦;180◦] is denoted by D (see Fig. 1). The
latter stands for the pixels belonging to uniform areas, areas of texture and clutter. The
usage of the per-pixel optimization, not global one, was driven by the aim to create a local
framework which suits well for a hardware implementation. In the general case we introduce
an iterative upscaling process, at each iteration n considering MAP estimates of each HR
pixel j type tn( j) and intensity In( j) given types and intensities calculated at the previous
iteration (n−1):{

t̃n( j), Ĩn( j)
}

= arg max
tn( j),In( j)

P
(
tn( j), In( j)

∣∣{tn−1(k), In−1(k)
}

k∈Θ

)
∀ j. (1)
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Figure 1: Possible edge orientations for D = 8 and their indexes. LR pixels are shown by
circles.

Here Θ stands for a spatial neighbourhood of pixel j. According to the Bayes rule and
omitting obvious transformations, MAP estimates (1) can be rewritten as:{

t̃n( j), Ĩn( j)
}

= arg max
tn( j),In( j)

(
P
(
In( j)

∣∣tn( j),
{

In−1(k)
}

k∈Θ

)
×

× P
(
tn( j)

∣∣{tn−1(k), In−1(k)
}

k∈Θ

))
= arg max

tn( j),In( j)

(
P
(
In( j)

∣∣tn( j),
{

In−1(k)
}

k∈Θ

)
×

× P
({

In−1(k)
}

k∈Θ
|tn( j)

)
×P

(
tn( j)

∣∣{tn−1(k)
}

k∈Θ

))
.

(2)

As it can be noticed, the problem took the form of maximizing the product (2) of three
PDFs which must be specified in some way. The first one, P1 = P

(
In( j)

∣∣tn( j),
{

In−1(k)
}

k∈Θ

)
,

denotes the likelihood of an intensity value In( j) given the pixel type tn( j) and neighbour-
hood intensities

{
In−1(k)

}
k∈Θ

calculated at the previous iteration. In other words, P1 reflects
how good the new pixel intensity fits the local image structure while the new pixel type is
being fixed. The second PDF, P2 = P

({
In−1(k)

}
k∈Θ
|tn( j)

)
, expresses how likely the inten-

sities
{

In−1(k)
}

k∈Θ
are if the j-th pixel has type tn( j). Thus P2 measures how the pixel type

impacts its neighbourhood intensities. The last component, P3 = P
(
tn( j)

∣∣{tn−1(k)
}

k∈Θ

)
,

expresses the relation between the new pixel type tn( j) and the old neighbourhood config-
uration

{
tn−1(k)

}
k∈Θ

. In a general case the optimum search is performed over all possible
pairs {tn( j), In( j)}.

3.2 Framework implementation
Here we describe one of the possible implementations of the framework described in Sub-
section 3.1. The major assumptions made are the following:

• The intensities of pixels lying next to an edge are distributed as a mixture of gaussians
with means corresponding to different sides of the edge.

• The intensities of non-edge pixels are uniformly distributed as no specific information
is available for them. Therefore, their PDF equals to 1

256 if the 8-bit intensity coding
is used.

According to this, the following derivations are appropriate for P1 – P3:

P1 =

{ 1
256 , if tn( j) = "non-edge";

1√
2πσ1

exp
(
− (In( j)−µ)2

2σ12

)
, otherwise,

(3)
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where µ is the mean of 2N1 + 1 pixels of
{

In−1(k)
}

k∈Θ
centered at the current pixel j and

lying on an edge with direction tn( j). In other words, denoting the coordinates of the current
pixel by (x,y), we get

µ =
1

2N1 +1

N1

∑
p=−N1

In−1(x+ p∆X(tn( j)),y+ p∆Y (tn( j))), (4)

where (∆X(t),∆Y (t)) is the distance vector between two neighboring HR pixels lying on an
edge with direction t, e.g. (∆X(4),∆Y (4)) = (1,−2) for D = 8. Deviation σ1 is assumed
constant.

The value of P2 depends on whether the current pixel belongs to a non-edge or an edge:

P2 =


( 1

256

)|Θ|
, if tn( j) = "non-edge";

2
∏
i=0

(
∏

u∈E(i)

1√
2πσ2

exp
(
− (In−1(u)−µi)2

2σ22

))
·
( 1

256

)|Θ|−∑
2
i=0 |Ei|, otherwise.

(5)
In the first case, if the pixel does not belong to an edge, the distribution of all |Θ| pixel values
in its neighbourhood is considered uniform. In the other case, if the pixel belongs to an edge
of tn( j) direction, three groups {Ei}2

i=0 of pixels oriented in the direction tn( j) are taken into
account as illustrated in Fig. 2. Group E0 contains 2N2 +1 edge pixels including the current
one at which the group is centered. Each of the groups E1 and E2 is formed by 2N3 pixels
adjacent to the edge.

current HR pixel

Figure 2: Spatial neighbourhood Ω of the current HR pixel j for the case D = 8, 2 times
magnification. LR pixels are shown by circles, interpolated pixels – by squares. Pixels lying
next to an edge of index tn( j) = 2 are shown with gradations of black: pixels from E0 are
painted with black, from E1 and E2 – with light and dark grey (here N2 = 1, N3 = 2). The
intensities of pixels painted with white are considered uniformly distributed.

The intensities in all groups are assumed normally distributed with means {µi}2
i=0 and

constant deviation σ2. The means are computed similar to (4):

µ0 =
1

2N2 +1

N2

∑
p=−N2

In−1(x+ p∆X(tn( j)),y+ p∆Y (tn( j)));

µ{1,2} =
1

2N3

N3

∑
p=−N3+1

In−1(x̃{1,2}+ p∆X(tn( j)), ỹ{1,2}+ p∆Y (tn( j))).

(6)
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Here
(
x̃{1,2}, ỹ{1,2}

)
stands for the pixels from E{1,2} lying next to the current pixel (x,y) (on

the left and on the right in Fig. 2). And finally, pixels from Θ not belonging to ∪2
i=0Ei are

assumed having a uniform distribution.
To estimate P3 we employ the heuristic that if the type of a pixel is an edge of a certain

direction, then the neighboring pixels in the same or close direction usually exhibit the same
or close edge orientations. Non-edge pixels are also likely to form consistent groups in the
image plane. This leads to the following equation:

P3 =
1
Z

exp−∑
d

(
w(tn(x,y),d) · ∑

s∈{−1,1}
δ
(
tn(x,y), tn−1 (x+ s∆X(d),y+ s∆Y (d))

))
. (7)

Here δ (t1, t2) is a distance function between the pixel types t1 and t2:

δ (t1, t2) =


0, if both t1 and t2 are "non-edge";
V, if only one of t1 and t2 is "non-edge";
(min(|t1− t2|,D−|t1− t2|))γ , otherwise.

(8)

In (8) V is a constant specifying the distance between edge and non-edge types and γ is a
parameter which controls the influence of neighbour pixels type on the current pixel type.
From (8) follows that if both t1 and t2 are edge types, the distance between them depends
on how close the corresponding orientations are, reaching maximum if they are orthogonal.
w(t1, t2) is a weighting function which takes the maximum value when the types t1 and t2 are
equal:

w(t1, t2) = exp(−δ (t1, t2)) . (9)

Finally, Z is a normalizing constant ensuring ∑tn( j) P3 = 1. In (7) the summation is performed
over all possible edge directions d, and for each of them it is determined how much the types
of pixels (x±∆X(d),y±∆Y (d)) are close to type tn(x,y). The weighting allows to account
directions d close to tn(x,y) with higher weights, thus enforcing the edge consistency.

Initial estimates of HR pixels intensities and types have a crucial effect on the algorithm
performance. The intensity values were obtained via the bicubic interpolation filter. As for
the initial pixel types, the only function depending on it is P1

3 = P
(
t1( j)

∣∣{t0(k)
}

k∈Θ

)
and

from our experiments better results can be achieved specifying not t0 itself but P1
3 as:

P1
3 =

{
0, if t1( j) = "non-edge";
1/D, otherwise.

(10)

I.e. at the 1st iteration only edge types are considered possible (with a uniform distribution),
and non-edge areas detection is done on further iterations.

Substituting (3), (5), and (7) into (2) we get:{
t̃n( j), Ĩn( j)

}
= arg max

tn( j),In( j)
(P1 ·P2 ·P3) = arg min

tn( j),In( j)
− ln(P1 ·P2 ·P3) =

= arg min
tn( j),In( j)

(L12 +L3) ,
(11)

where (omitting obvious transformations)

L12 =


L , if tn( j) = "non-edge";

α(In( j)−µ)2 +
2
∑

i=0
∑

u∈E(i)

(
In−1(u)−µi

)2
, otherwise,

(12)
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L3 = β ∑
d

(
w(tn(x,y),d) · ∑

s∈{−1,1}
δ
(
tn(x,y), tn−1 (x+ s∆X(d),y+ s∆Y (d))

))
. (13)

For simplicity, in (12) – (13) we introduced several new constants:

L = 2σ
2
2

(
ln

256√
2πσ2

2

∑
i=0
|Ei|+ ln

256√
2πσ1

)
,α =

(
σ2

σ1

)2

,β = 2σ
2
2 . (14)

It is worth noting that according to (11), the proposed EDI method can also be treated as
the energy minimization problem. Like in [4], to lower the computational complexity of the
minimum search it is performed over a reduced candidate set

Ω =
⋃

t∈{1..D}

{{
t, IEDI(t)

}
;
{

t, IBic}}⋃{{"non-edge", IBic}} (15)

As it can be noticed, for each edge type t ∈ {1..D} only two possible intensity values are
considered:

• EDI candidate IEDI(t) which is calculated in the bilinear manner using LR pixels form-
ing a parallelogram aligned with the edge direction t; a similar approach to the edge-
oriented interpolation was taken in [11]. E.g. in Fig. 3 the parallelogram consists of
pixels marked E, F, G, H and the EDI candidate is calculated as the mean of corre-
sponding intensities.

• Bicubic candidate IBic which is taken directly from the HR frame obtained via the
bicubic interpolation.

Only the bicubic candidate is considered for the "non-edge" pixel type. This prevents apply-
ing edge-directed interpolation to textured areas, which results in annoying artifacts.

F H

G

E

current HR pixel

Figure 3: Calculation of EDI candidate IEDI(t) for the case D = 8, t = 2, 2 times magnifi-
cation. LR pixels are shown by circles, interpolated pixels – by squares. The interpolation
parallelogram is shown by a dashed line.

From (11) – (13), (15) follows that the proposed EDI method can be implemented using
integer arithmetic without divisions. The locality of the approach (to process the current
HR pixel only its neighbourhood Θ must be known) makes the algorithm parallelization
possible.
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4 Experimental results
The goal of the comparison was to test the upscaling algorithms performance on an input
data well approximating the real-world cases where different types of both edges and tex-
ture are present. We used 3 ground-truth greyscale (luminosity only) frames of 1280×704
videos Jets, Panslow, and Spincalendar. Direct downsampling of the HR images leads to
the aliased picture which is uncommon in real applications. Therefore, the ground-truth
was at first low-pass filtered by a symmetrical 3× 3 Gaussian kernel with σ = 1. Then the
blurred HR images were downsampled 2 times to 640×352 LR images which were used as
an input to the upscaling methods. After the 2 times enlargement the resulting HR images
were obtained. As the input LR images were derived from blurred HR images, the result
of the interpolation was also blurred. Because of that, a direct comparison of the resulting
pictures with the ground-truth was quite incorrect, and deblurring was introduced as an addi-
tional postprocessing step. The deblurred resulting HR images were then compared with the
ground-truth using the PSNR measure. It is worth noting that such a comparison scheme is
often used in super-resolution algorithms tests [1, 10]. We used MATLAB Image Processing
Toolbox implementation of the Richardson-Lucy Deconvolution (RLD) algorithm, which
was run with the aforementioned Gaussian convolution kernel, and RLD deblurring itera-
tions number was varied from 1 to 10. Providing the deblurring algorithm with a known blur
kernel is plausible here as the performance of interpolation is tested, not that of deblurring.

We compared the proposed EDI algorithm with a conventional bicubic interpolation and
EDI algorithms which implementations were provided by their authors: MRF-EDI [4], Steer-
ing Kernel Regression (SKR) [10], and NEDI [5]. The algorithms were executed with default
parameter values, and for the proposed method the following parameter set was used: D = 8,
N1 = 1, N2 = 1, N3 = 2, σ2

1 = 32, σ2
2 = 256, V = 2, γ = 2, 2 processing iterations.

The dependence of PSNR on RLD iterations number for the compared methods is shown
in Fig. 4 – Fig. 6 (0 iterations stand for the case where no RLD deblurring was used and the
blurred HR output of the methods was directly compared with the ground-truth). From the
plots it is clear that the proposed method outperforms other EDI methods and the bicubic in-
terpolation as well. Good results of bicubic upscaling comparing to some EDI techniques are
explained by a large amount of fine texture in the test images, where artifacts and overblurri-
ness inherent to other EDI algorithms lead to the PSNR degradation. The proposed method
efficiently discriminates between edges and texture, gaining the best PSNR results.
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Figure 4: Dependence of PSNR on RLD iterations number at Jets test image.

Visual performance of the proposed algorithm is presented in Fig. 7 – Fig. 8 along with
the results of other methods. For clarity, images in Fig. 7 are enlarged two times by the
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Figure 5: Dependence of PSNR on RLD iterations number at Panslow test image.
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Figure 6: Dependence of PSNR on RLD iterations number at Spincalendar test image.

nearest neighbor filter. In both figures images are shown without deblurring. As it can be
seen, our method provides better edges upscaling comparing to the bicubic interpolation and
MRF-EDI, more detailed and sharp picture comparing to SKR, and the resulting picture is
not contaminated with artifacts as opposed to NEDI.

Bicubic MRF-EDI SKR NEDI Proposed
Figure 7: Visual quality comparison of edge areas interpolation.

The processing speed of the two-thread SIMD-optimized C implementation of the pro-
posed method was 26 frames per second enlarging 640×352 video 2 times at laptop based
on Intel Core2 Duo P8400 2.2Ghz CPU.

5 Conclusion
In this paper we presented a novel local approach to the edge-directed image interpolation,
based on a Bayesian framework. The flexibility of the technique allows the construction of
different algorithm modifications, one of which was described. As the objective and sub-
jective comparisons show, the algorithm outperforms conventional edge-oriented upscaling
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Bicubic MRF-EDI SKR NEDI Proposed
Figure 8: Visual quality comparison of textured areas interpolation.

methods, combining high-quality edge interpolation with artifacts-free texture handling. The
processing quality can be further increased by introducing "texture" and "uniform area" pixel
types instead of the current "non-edge" type. This will make possible the usage of large in-
terpolation kernels, e.g. lanczos, for textured areas, and small kernels (bilinear or bicubic)
for uniform areas. Increasing the number of allowed pre-defined edge directions will also
benefit.

The method suits well for the hardware implementation, particularly on massively paral-
lel systems, e.g. modern GPUs.
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