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The problem of image interpolation is one of the most thoroughly devel-
oped in the area of multimedia processing. Linear interpolation methods
suffer from aliasing and Hibbs effect, and they fail to provide artifacts-
free enlargement of edges. This has led to a plethora of edge-oriented
upscaling techniques aimed at providing superior edge processing qual-
ity. However, Edge-Directed Interpolation (EDI) of textured areas results
in strong artifacts, making the discrimination between edges and texture
an important task as well.

Non-linear image enlargement techniques can be divided into two
groups according to the edge processing strategy which can be implicit or
explicit. Implicit EDI methods are constructed in such a way that their in-
ner parameters adaptively change depending on the local image structure.
Therefore, the interpolation is performed along an edge if it is present
[2, 4, 6, 8]. Unlike local implicit EDI methods mentioned above, global
implicit methods impose constraints on the whole resulting image [1, 7].
Following the opposite approach, an explicit EDI algorithm can be sub-
divided into two blocks: edge detection and edge-oriented interpolation.
Such methods often limit the set of possible edge directions, aiming at
speed-up and robustness [3, 5, 9].

We suggest applying a pixelwise Bayesian reasoning for the simulta-
neous HR pixel type detection and its intensity interpolation. The pixel
type can be either an index of one of the pre-defined edge orientations or
"non-edge". The former is for the pixels lying on edges; the number of al-
lowed orientations in the range [0◦;180◦] is an algorithm parameter. The
latter stands for the pixels belonging to uniform areas, areas of texture and
clutter. In the general case we introduce an iterative upscaling process, at
each iteration n considering MAP estimates of each HR pixel j type tn( j)
and intensity In( j) given types and intensities calculated at the previous
iteration (n−1):{

t̃n( j), Ĩn( j)
}

= arg max
tn( j),In( j)

P
(

tn( j), In( j)
∣∣∣{tn−1(k), In−1(k)

}
k∈Θ

)
∀ j.

(1)
Here Θ stands for a spatial neighbourhood of pixel j. According to the
Bayes rule and omitting obvious transformations, MAP estimates (1) can
be rewritten as:{

t̃n( j), Ĩn( j)
}

= arg max
tn( j),In( j)

(P1 ·P2 ·P3) , (2)

where P1 = P
(

In( j)
∣∣∣tn( j),

{
In−1(k)

}
k∈Θ

)
denotes the likelihood of an

intensity value In( j) given the pixel type tn( j) and neighbourhood inten-
sities

{
In−1(k)

}
k∈Θ

calculated at the previous iteration. In other words,
P1 reflects how good the new pixel intensity fits the local image structure
while the new pixel type is being fixed. P2 = P

({
In−1(k)

}
k∈Θ
|tn( j)

)
expresses how likely the intensities

{
In−1(k)

}
k∈Θ

are if the j-th pixel
has type tn( j). Thus P2 measures how the pixel type impacts its neigh-

bourhood intensities. Finally, P3 = P
(

tn( j)
∣∣∣{tn−1(k)

}
k∈Θ

)
expresses

the relation between the new pixel type tn( j) and the old neighbourhood
configuration

{
tn−1(k)

}
k∈Θ

. In a general case the optimum search is per-
formed over all possible pairs {tn( j), In( j)}.

In the framework implementation we used, the following major as-
sumptions were made:

• The intensities of pixels lying next to an edge are distributed as a
mixture of gaussians with means corresponding to different sides
of the edge.

• The intensities of non-edge pixels are considered uniformly dis-
tributed.

Then the interpolation problem takes the form of a minimization of sim-
ple (from the computational point of view) function calculated over a lo-

Figure 1: Pixel type map for a fragment of Spincalendar test image, su-
perimposed on the image. Different pixel types are shown with different
colours.
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Figure 2: Visual quality comparison on a fragment of Spincalendar test
image.

cal window. Like in [3], the minimization is performed over a reduced
candidate set.

As the objective and subjective comparisons show, the proposed algo-
rithm outperforms conventional edge-oriented upscaling methods, com-
bining high-quality edge interpolation with artifacts-free texture handling.
As it is local, computationally simple, and parallelizable, the method suits
well for the hardware implementation, particularly on massively parallel
systems, e.g. modern GPUs.
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