Learning generative texture models with extended Fields-of-Experts
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Much effort has been devoted to the development of prior models of
generic image structure. Such models are important for many image pro-
cessing and synthesis tasks, and as a building block of more comprehen-
sive probabilistic models of natural scenes. One successful example is the
Field-of-Experts (FoE) framework, recently proposed by Roth and Black
[3]. The FoE defines a probability distribution over images in the form
of a homogeneous high-order Markov random field (MRF). This MRF-
based model is translation invariant and can be applied to images of ar-
bitrary size. The model is parametric and all parameters can be learned
from training data, thus it can be directly adapted to the statistics of natu-
ral images.

Natural images are, however, extremely complex, containing differ-
ent regions with very different visual characteristics. Attempting to learn
these different characteristics with a single, generic model will most likely
lead to the model learning only the most generic properties — such as
piecewise smoothness in the case of the FoE [4, 6]. As an alternative ap-
proach we therefore propose to focus on models that are good at captur-
ing specific structure in natural images and use these models as building
blocks of more comprehensive, hierarchical models that can then account
for more complex properties of natural images. For example, a number of
texture models can be composed together to model an image comprised of
multiple regions. Suitable “component models” are clearly an important
prerequisite for such hierarchical models. Unfortunately, however, many
of the most powerful methods for generating specific structure that have
been proposed in the past (e.g. [1, 5]), are not formulated as probabilistic
models and it is therefore not clear how they could be used in this con-
text. In this work we first show that the FoE in its original formulation
is a very limited model even of specific image structure, but that an ex-
tended formulation of the model gives rise to a powerful generative model
of textures.

The FoE is a homogeneous high-order Markov random field (MRF)
with clique potentials defined in terms of the responses of these linear
filters
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where the index i runs over the pixels in the image, and x;) is the image
patch of the size of filter w; centered at pixel i. Roth & Black choose
®(y; &) to be the one dimensional Student-t potential, i.e. ®(y;v) = (1+
%yz)’v (with v > 0) so that (1) can be written in terms of the energy as:
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This formulation defines a probabilistic model of images of arbitrary size
all parameters of which can be learned from data. The choice of the
Student-t potential is motivated by the properties of natural images and
previous work on probabilistic models of natural image patches (e.g. [2,
71), yet, the choice of a zero-centered Student-t potential forces the re-
sponse marginals of the filters that are being learned to be centered at
zero and monotonically decaying. The distribution defined by the FoE is
unimodal and it is thus very restrictive. We propose an extension of the
original FoE model, the bimodal FoE (BiFoE), which allows for bimodal
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expert functions ®p;(y;v,a,b) = {1 + % [(y—i— b)? +a]2} . This choice
of ® gives rise to the following energy:
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®p; is bimodal for a < 0 and b determines the center of the potential.
The BiFoE can be sampled from and learned in essentially the same way
as the FoE but it allows for considerably more flexibility with respect to
the shape of the response marginals of the filters that it learns and it can
model globally highly multimodal distributions.

In the paper we describe experiments in which we learn FoE and Bi-
FoE models of several Brodatz textures. We synthesize textures from
the models and compare results quantitatively using a correlation score.
While the FoE is unable to model these textures well (with results simi-
lar to a much simpler Gaussian MRF), the BiFoE produces samples that
are very similar to the original textures. We further evaluate the BiFoE
quantitatively on a texture inpainting task and find that for the textures
considered its performance is comparable to the non-parametric method
suggested in [1]. Unlike the latter, however, it defines a compact paramet-
ric model that can be used as component in more comprehensive proba-
bilistic models, making it a promising building block of generative models
of mid-level vision.
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Figure 1: (a) Training data: 50 x 50 patches of some of the textures used
in our experiments. (b) FoE samples of the textures in (a). (c) BiFoE sam-
ples. (d, e) Two more challenging textures: patches of original textures

(left) and corresponding BiFoE samples (right).
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