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Abstract

Nonnegative Matrix Factorization (NMF) has been widely used in computer vision
and pattern recognition. It aims to find two nonnegative matrices whose product can
well approximate the nonnegative data matrix, which naturally leads to parts-based and
non-subtractive representation. In this paper, we present a neighborhood preserving non-
negative matrix factorization (NPNMF) for dimensionality reduction. It imposes an addi-
tional constraint on NMF that each data point can be represented as a linear combination
of its neighbors. This constraint preserves the local geometric structure, and is good at
dimensionality reduction on manifold. An iterative multiplicative updating algorithm is
proposed to optimize the objective, and its convergence is guaranteed theoretically. Ex-
periments on benchmark face recognition data sets demonstrate that the proposed method
outperforms NMF as well as many state of the art dimensionality reduction methods.

1 Introduction
Nonnegative Matrix Factorization (NMF) [9] has been widely used in computer vision and
pattern recognition. It aims to find two nonnegative matrices whose product can well approx-
imate the nonnegative data matrix, which naturally leads to parts-based and non-subtractive
representation. Recent years, many variants of NMF have been proposed. [10] proposed a
local NMF (LNMF) which imposes a spatially localized constraint on the bases. [8] pro-
posed a NMF with sparseness constraint. [5] proposed a semi-NMF approach which relaxes
the nonnegative constraint on the base matrix. All the methods mentioned above are unsu-
pervised, while [14] and [15] independently proposed a discriminative NMF (DNMF), which
adds an additional constraint seeking to maximize the between-class scatter and minimize
the within-class scatter in the subspace spanned by the bases.

Recent studies have shown that many real world data are actually sampled from a non-
linear low dimensional manifold which is embedded in the high dimensional ambient space
[12] [11]. Yet NMF does not exploit the geometric structure of the data. In other word, it
assumes that the data points are sampled from a Euclidean space. This greatly limits the
application of NMF for the data lying on manifold. To address this problem, [3] proposed a
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graph regularized NMF (GNMF), which assumes that the nearby data points are likely to be
in the same cluster, i.e. cluster assumption [4] [6].

In this paper, we present a novel nonnegative matrix factorization method. It is based
on the assumption that if a data point can be reconstructed from its neighbors in the input
space, then it can be reconstructed from its neighbors by the same reconstruction coeffi-
cients in the low dimensional subspace, i.e. local linear embedding assumption [12] [7].
This assumption is embodied by a neighborhood preserving regularization, which preserves
the local geometric structure. We constrain NMF with neighborhood preserving regulariza-
tion, resulting in a neighborhood preserving NMF (NPNMF). NPNMF not only inherits the
advantages of NMF, e.g. nonnegativity, but also overcomes the shortcomings of NMF, i.e.
Euclidean assumption based. We will show that it can be optimized via an iterative multi-
plicative updating algorithm and its convergence is theoretically guaranteed. Experiments
on benchmark face recognition data sets demonstrate that the proposed method outperforms
NMF and its variants as well as many other state of the art dimensionality reduction methods.

The remainder of this paper is organized as follows. In Section 2 we briefly review NMF.
In Section 3, we present NPNMF, followed with its optimization algorithm along with the
proof of the convergence of the proposed algorithm. Experiments on many benchmark face
recognition data sets are demonstrated in Section 4. Finally, we draw a conclusion in Section
5.

2 A Review of NMF

In this section, we will briefly review NMF [9]. Given a nonnegative data matrix X =
[x1, . . . ,xn] ∈ Rd×n

+ , each column of X is a data point. NMF aims to find two nonnegative
matrices U ∈ Rd×m

+ and V ∈ Rm×n
+ which minimize the following objective

JNMF = ||X−UV||2F ,

s.t. U≥ 0,V≥ 0, (1)

where || · ||F is Frobenius norm. To optimize the objective, [9] presented an iterative multi-
plicative updating algorithm as follows

Ui j ← Ui j
(XVT )i j

(UVVT )i j

Vi j ← Vi j
(UT X)i j

(UT UV)i j
(2)

In the rest of this paper, we denote V = [v1, . . . ,vn] where vi ∈ Rm
+ is the i-th column

vector of V.

3 The Proposed Method

In this section, we first introduce neighborhood preserving regularization. Then we will
present neighborhood preserving nonnegative matrix factorization, followed with its opti-
mization algorithm. The convergence of the proposed algorithm is also proved.
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3.1 Neighborhood Preserving Regularization
Recent studies have shown that many real world data are actually sampled from a nonlinear
low dimensional manifold which is embedded in the high dimensional ambient space [12]
[11]. In order to consider the geometric structure in the data, we assume that if a data point
can be reconstructed from its neighbors in the input space, then it can be reconstructed from
its neighbors by the same reconstruction coefficients in the low dimensional subspace, i.e.
local linear embedding assumption [12] [7].

For each data point xi, we use Nk(xi) to denote its k-nearest neighborhood. And we
characterize the local geometric structure of its neighborhood by the linear coefficients that
reconstruct xi from its neighbors, i.e. x j ∈Nk(xi). The reconstruction coefficients are com-
puted by the following objective function

min ||xi− ∑
x j∈Nk(xi)

Mi jx j||2,

s.t. ∑
x j∈Nk(xi)

Mi j = 1 (3)

And Mi j = 0 if x j /∈Nk(xi).
Then vi,1≤ i≤ n in the low dimensional subspace can be reconstructed by minimizing

∑
i
||vi− ∑

x j∈Nk(xi)
Mi jv j||2

= tr(V(I−M)(I−M)VT )
= tr(VLVT ) (4)

where I ∈ Rn×n is identity matrix and L = (I−M)(I−M). Eq.(4) is called Neighborhood
Preserving Regularization. The better each point is reconstructed from its neighborhood in
the low dimensional subspace, the smaller the neighborhood preserving regularizer will be.

3.2 Neighborhood Preserving NMF
Our assumption is that each point can be reconstructed by the data points in its neighborhood.
To apply this idea for NMF, we constrain NMF in Eq.(1) with neighborhood preserving
regularization in Eq.(4) as follows

JNPNMF = ||X−UV||2F + µtr(VLVT ),
s.t. U≥ 0,V≥ 0, (5)

where µ is a positive regularization parameter controlling the contribution of the addi-
tional constraint. We call Eq.(5) Neighborhood Preserving Nonnegative Matrix Factoriza-
tion (NPNMF). Let µ = 0, Eq.(5) degenerates to the original NMF. To make the objective
in Eq.(5) lower bounded, we use L2 normalization on rows of V in the optimization, and
compensate the norms of V to U.

In the following, we will give the solution to Eq.(5).
Since U ≥ 0, V ≥ 0, we introduce the Lagrangian multiplier γ ∈ Rd×m and η ∈ Rm×n,

thus, the Lagrangian function is

L(U,V) = ||X−UV||2F + µtr(VLVT )− tr(γUT )− tr(ηVT ) (6)
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Setting ∂L(U,V)
∂U = 0 and ∂L(U,V)

∂V = 0, we obtain

γ = −2XVT +2UVVT

η = −2UT X+2UT UV+2µVL (7)

Using the Karush-Kuhn-Tucker condition [2] γ i jUi j = 0 and η i jVi j = 0, we get

(−XVT +UVVT )i jUi j = 0
(−UT X+UT UV+ µVL)i jVi j = 0 (8)

Introduce
L = L+−L− (9)

where L+
i j = (|Li j|+Li j)/2 and L−i j = (|Li j|−Li j)/2.

Substitute Eq.(9) into Eq.(8), we obtain

(−XVT +UVVT )i jUi j = 0
(−UT X+UT UV+ µVL+−µVL−)i jVi j = 0 (10)

Eq.(10) leads to the following updating formula

Ui j ← Ui j

√
(XVT )i j

(UVVT )i j

Vi j ← Vi j

√
(UT X+ µVL−)i j

(UT UV+ µVL+)i j
(11)

3.3 Convergence Analysis
In this section, we will investigate the convergence of the updating formula in Eq.(11). We
use the auxiliary function approach [9] to prove the convergence. Here we first introduce the
definition of auxiliary function [9].

Definition 3.1. [9] Z(h,h′) is an auxiliary function for F(h) if the conditions

Z(h,h′)≥ F(h),Z(h,h) = F(h),

are satisfied.

Lemma 3.2. [9] If Z is an auxiliary function for F, then F is non-increasing under the
update

h(t+1) = argmin
h

Z(h,h(t))

Proof. F(h(t+1))≤ Z(h(t+1),h(t))≤ Z(h(t),h(t)) = F(h(t))

Lemma 3.3. [5] For any nonnegative matrices A ∈ Rn×n, B ∈ Rk×k, S ∈ Rn×k,S′ ∈ Rn×k,
and A, B are symmetric, then the following inequality holds

n

∑
i=1

k

∑
p=1

(AS′B)ipS2
ip

S′ip
≥ tr(ST ASB)
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Theorem 3.4. Let
J(U) = tr(−2XT UV+VT UT UV) (12)

Then the following function

Z(U,U′) =−2∑
i j

(XVT )i jU′i j(1+ log
Ui j

U′i j
)+∑

i j

(U′VVT )i jU2
i j

U′i j

is an auxiliary function for J(U). Furthermore, it is a convex function in U and its global
minimum is

Ui j = Ui j

√
(XVT )i j

(UVVT )i j
(13)

Proof. See Appendix A

Theorem 3.5. Updating U using Eq.(11) will monotonically decrease the value of the ob-
jective in Eq.(5), hence it converges.

Proof. By Lemma 3.2 and Theorem 3.4, we can get that J(U0) = Z(U0,U0)≥ Z(U1,U0)≥
J(U1) ≥ . . . So J(U) is monotonically decreasing. Since J(U) is obviously bounded below,
we prove this theorem.

Theorem 3.6. Let

J(V) = tr(−2XT UV+VT UT UV−µVLVT ) (14)

Then the following function

Z(V,V′) = ∑
i j

(UT UV′)i jV2
i j

V′i j
+ µ ∑

i j

(V′L−)i jV2
i j

V′i j

− ∑
i j

(UT X)i jV′i j(1+ log
Vi j

V′i j
)−µ ∑

i jk
L+

jkV′i jV
′
ik(1+ log

Vi jVik

V′i jV′ik
)

is an auxiliary function for J(V). Furthermore, it is a convex function in V and its global
minimum is

Vi j = Vi j

√
(UT X+ µVL+)i j

(UT UV+ µVL−)i j
(15)

Proof. See Appendix B

Theorem 3.7. Updating V using Eq.(11) will monotonically decrease the value of the ob-
jective in Eq.(5), hence it converges.

Proof. By Lemma 3.2 and Theorem 3.6, we can get that J(V0) = Z(V0,V0)≥ Z(V1,V0)≥
J(V1) ≥ . . . So J(V) is monotonically decreasing. Since J(V) is obviously bounded below,
we prove this theorem.
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4 Experiments
In this section, we evaluate the performance of the proposed method. We compare our
method with Principal Component Analysis (PCA) [1], Linear Discriminant Analysis (LDA)
[1], NMF [9], LNMF [10], DNMF [14] [15] and Neighborhood Preserving Embedding
(NPE) [7]. We use nearest neighbor (NN) classifier as baseline.

4.1 Data Sets
In our experiments, we use three standard face recognition data sets which are widely used
as benchmark data sets in dimensionality reduction literature.

The ORL face database1. There are ten images for each of the 40 human subjects, which
were taken at different times, varying the lightings, facial expressions and facial details. The
original images (with 256 gray levels) have size 92× 112, which are resized to 32× 32 for
efficiency;

The Yale face database2. It contains 11 gray scale images for each of the 15 individuals.
The images demonstrate variations in lighting condition, facial expression and with/without
glasses. In our experiments, the images were also resized to 32×32;

The CMU PIE face database [13]. It contains 68 individuals with 41368 face images
as a whole. The face images were captured by 13 synchronized cameras and 21 flashes,
under varying poses, illuminations and expressions. In our experiments, one near frontal
pose (C27) is selected under different illuminations, lightings and expressions which leaves
us about 49 near frontal face images for each individual, and all the images were also resized
to 32×32.

Figure 1 shows some sample images from ORL, Yale and PIE data sets.

Figure 1: Some sample images. The top row is from ORL data set, the middle row is from
Yale data set, and the bottom row is from PIE data set.

4.2 Parameter Settings
For each data set, we randomly divide it into training and testing sets, and evaluate the recog-
nition accuracy on the testing set. In detail, for each individual in the ORL and Yale data
sets, p = 2,3,4 images were randomly selected as training samples, and the rest were used
for testing, while for each individual in the PIE data set, p = 5,10,20 images were randomly
selected as training samples3. The training set was used to learn a subspace, and the recog-

1http://www.cl.cam.ac.uk/Research/DTG/attarchive:pub/data
2http://cvc.yale.edu/projects/yalefaces/yalefaces.html
3As we know, face recognition with small training samples is more challenging, so we use only about 10%−40%

samples of each data set for training.

Citation
Citation
{Belhumeur, Hespanha, and Kriegman} 1997

Citation
Citation
{Belhumeur, Hespanha, and Kriegman} 1997

Citation
Citation
{Lee and Seung} 2000

Citation
Citation
{Li, Hou, Zhang, and Cheng} 2001

Citation
Citation
{Wang, Jia, Hu, and Turk} 2004

Citation
Citation
{Zafeiriou, Tefas, Buciu, and Pitas} 2006

Citation
Citation
{He, Cai, Yan, and Zhang} 2005

Citation
Citation
{Sim, Baker, and Bsat} 2003



GU, ZHOU: NEIGHBORHOOD PRESERVING NONNEGATIVE MATRIX FACTORIZATION 7

nition was performed in the subspace by NN classifier. Since the training set was randomly
chosen, we repeated each experiment 20 times and calculated the average recognition accu-
racy. In general, the recognition rate varies with the dimensionality of the subspace. The
best average performance obtained as well as the corresponding dimensionality is reported.

For LDA, as in [1], we first use PCA to reduce the dimensionality to n− c and then
perform LDA (Note that in PIE data set with p = 20, n− c is larger than the original dimen-
sionality d, hence we perform LDA directly without PCA in this case). The regularization
parameter µ is set by searching the grid {0.01,0.1,1,10,100}. The neighborhood size k in
NPE and NPNMF is set by searching the grid {1,2,3,4,5, . . . ,10}.

For NMF, LNMF, DNMF and NPNMF, the projection is computed as U† = (UT U)−1UT ,
except for Yale data set, in which we use UT instead of U† because the classification capa-
bility of UT is much better than that of U† on this data set.

4.3 Classification Results
Table 1, 2 and 3 show the experimental results of all the methods on the three data sets re-
spectively, where the value in each entry represents the average recognition accuracy of 20
independent trials, and the number in brackets is the corresponding projection dimensional-
ity.

Table 1: Face Recognition accuracy on the ORL data set. The number in brackets is the
corresponding projection dimensionality.

Method 2 Train 3 Train 4 Train
Baseline 70.67 78.88 84.12
PCA 70.67(79) 78.88(118) 84.21(152)
LDA 72.80(25) 83.79(39) 90.13(39)
NPE 73.19(36) 84.29(54) 91.06(73)
NMF 70.87(97) 78.98(81) 84.48(95)
LNMF 71.73(178) 81.09(168) 86.31(195)
DNMF 74.00(75) 83.32(84) 88.10(74)
NPNMF 75.31(200) 84.73(94) 91.35(81)

Table 2: Face Recognition accuracy on the Yale data set. The number in brackets is the
corresponding projection dimensionality.

Method 2 Train 3 Train 4 Train
Baseline 46.04 49.96 55.62
PCA 46.04(29) 49.96(44) 55.67(58)
LDA 42.81(11) 60.33(14) 68.10(13)
NPE 48.19(13) 62.00(19) 69.00(68)
NMF 44.11(112) 49.00(195) 52.19(164)
LNMF 44.00(157) 48.83(198) 53.57(197)
DNMF 48.15(161) 60.50(169) 66.67 (102)
NPNMF 50.36(119) 62.62(137) 70.33(151)

We can see that our method outperforms other dimensionality reduction methods on all
the three data sets. The superiority of our method may arise in the following two aspects: (1)
local linear embedding assumption [12] [7], which preserves the local geometric structure
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Table 3: Face Recognition accuracy on the PIE data set. The number in brackets is the
corresponding projection dimensionality.

Method 5 Train 10 Train 20 Train
Baseline 43.02 62.90 83.19
PCA 42.87(199) 62.51(195) 82.84(200)
LDA 83.39(67) 90.47(67) 93.98(67)
NPE 84.71(166) 91.48(200) 94.33(200)
NMF 78.66(200) 88.98(200) 95.52(200)
LNMF 76.47(200) 87.91(200) 95.61(196)
DNMF 80.51(200) 90.85(200) 96.40(191)
NPNMF 85.02(200) 91.97(198) 96.46(182)

of the data. (2) the nonnegativity, inheriting from NMF, which is suitable for nonnegative
data, e.g. image data.

5 Conclusion
In this paper, we present a neighborhood preserving nonnegative matrix factorization (NPNMF)
for dimensionality reduction, which preserves the local geometric structure. We show that it
can be optimized by an iterative multiplicative updating algorithm. The convergence of the
algorithm is proved theoretically. Experiments on many benchmark face recognition data
sets demonstrate that the proposed method outperforms NMF as well as many state of the art
dimensionality reduction methods.

A Proof of Theorem 3.4
Proof. We rewrite Eq.(12) as

L(U) = tr(−2VXT U+UVVT UT ) (16)

By applying Lemma 3.3, we have

tr(UVVT UT )≤∑
i j

(U′VVT )i jU2
i j

U′i j

To obtain the lower bound for the remaining terms, we use the inequality that

z≥ 1+ logz,∀z > 0 (17)

Then

tr(VXT U)≥∑
i j

(XVT )i jU′i j(1+ log
Ui j

U′i j
)

By summing over all the bounds, we can get Z(U,U′), which obviously satisfies (1) Z(U,U′)≥
JNPNMF(U); (2)Z(U,U) = JNPNMF(U)
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To find the minimum of Z(U,U′), we take the Hessian matrix of Z(U,U′)

∂ 2Z(U,U′)
∂Ui j∂Ukl

= δikδ jl(
2(U′VVT )i j

U′i j
+2(XVT )i j

U′i j

U2
i j

)

which is a diagonal matrix with positive diagonal elements. So Z(U,U′) is a convex function
of U, and we can obtain the global minimum of Z(U,U′) by setting ∂Z(U,U′)

∂Ui j
= 0 and solving

for U, from which we can get Eq.(13).

B Proof of Theorem 3.6
Proof. We rewrite Eq.(14) as

L(V) = tr(−2XT UV+VT UT UV−µVL+VT + µVL−VT ) (18)

By applying Lemma 3.3, we have

tr(VT UT UV) ≤ ∑
i j

(UT UV′)i jV2
i j

V′i j

tr(VL−VT ) ≤ ∑
i j

(V′L−)i jV2
i j

V′i j

By the inequality in Eq.(17), we have

tr(XT UV)≥∑
i j

(UT X)i jV′i j(1+ log
Vi j

V′i j
)

tr(VL+VT )≥∑
i jk

L+
jkV′i jV

′
ik(1+ log

Vi jVik

V′i jV′ik
)

By summing over all the bounds, we can get Z(V,V′), which obviously satisfies (1) Z(V,V′)≥
JNPNMF(V); (2)Z(V,V) = JNPNMF(V)

To find the minimum of Z(V,V′), we take the Hessian matrix of Z(V,V′)

∂ 2Z(V,V′)
∂Vi j∂Vkl

= δikδ jl(
2(UT X+ µV′L+)i jV′i j

V2
i j

+
2(UT UV′+ µV′L−)i j

V′i j
)

which is a diagonal matrix with positive diagonal elements. So Z(V,V′) is a convex function
of V, and we can obtain the global minimum of Z(V,V′) by setting ∂Z(V,V′)

∂Vi j
= 0 and solving

for V, from which we can get Eq.(15).
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