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Nonnegative Matrix Factorization (NMF) [2] has been widely used
in computer vision and pattern recognition. It aims to find two nonneg-
ative matrices whose product can well approximate the nonnegative data
matrix, which naturally leads to parts-based and non-subtractive repre-
sentation. Recent years, many variants of NMF have been proposed. [3]
proposed a local NMF (LNMF) which imposes a spatially localized con-
straint on the bases. All the methods mentioned above are unsupervised,
while [5] proposed a discriminative NMF (DNMF), which adds an addi-
tional constraint seeking to maximize the between-class scatter and mini-
mize the within-class scatter in the subspace spanned by the bases.

Recent studies have shown that many real world data are actually
sampled from a nonlinear low dimensional manifold which is embedded
in the high dimensional ambient space [4]. Yet NMF does not exploit
the geometric structure of the data. In other word, it assumes that the
data points are sampled from a Euclidean space. This greatly limits the
application of NMF for the data lying on manifold. In order to consider
the geometric structure in the data, we assume that if a data point can be
reconstructed from its neighbors in the input space, then it can be recon-
structed from its neighbors by the same reconstruction coefficients in the
low dimensional subspace, i.e. local linear embedding assumption [4]
[1].

For each data point xi, we use Nk(xi) to denote its k-nearest neigh-
borhood. And we characterize the local geometric structure of its neigh-
borhood by the linear coefficients that reconstruct xi from its neighbors,
i.e. x j ∈ Nk(xi). The reconstruction coefficients are computed by the
following objective function

min ||xi− ∑
x j∈Nk(xi)

Mi jx j||2,

s.t. ∑
x j∈Nk(xi)

Mi j = 1 (1)

And Mi j = 0 if x j /∈Nk(xi).
Then vi,1 ≤ i ≤ n in the low dimensional subspace can be recon-

structed by minimizing

∑
i
||vi− ∑

x j∈Nk(xi)
Mi jv j||2

= tr(V(I−M)(I−M)VT )

= tr(VLVT ) (2)

where I ∈ Rn×n is identity matrix and L = (I−M)(I−M). Eq.(2) is
called Neighborhood Preserving Regularization. The better each point is
reconstructed from its neighborhood in the low dimensional subspace, the
smaller the neighborhood preserving regularizer will be.

Our assumption is that each point can be reconstructed by the data
points in its neighborhood. To apply this idea for NMF, we constrain
NMF with neighborhood preserving regularization in Eq.(2) as follows

JNPNMF = ||X−UV||2F + µtr(VLVT ),

s.t. U≥ 0,V≥ 0, (3)

where µ is a positive regularization parameter controlling the contribu-
tion of the additional constraint. We call Eq.(3) Neighborhood Preserving
Nonnegative Matrix Factorization (NPNMF). Let µ = 0, Eq.(3) degener-
ates to the original NMF. To make the objective in Eq.(3) lower bounded,
we use L2 normalization on rows of V in the optimization, and compen-
sate the norms of V to U.

In the following, we will give the solution to Eq.(3).
Since U≥ 0, V≥ 0, we introduce the Lagrangian multiplier γ ∈Rd×m

and η ∈ Rm×n, thus, the Lagrangian function is

L(U,V) = ||X−UV||2F + µtr(VLVT )− tr(γUT )− tr(ηVT ) (4)

Setting ∂L(U,V)
∂U = 0 and ∂L(U,V)

∂V = 0, we obtain

γ = −2XVT +2UVVT

η = −2UT X+2UT UV+2µVL (5)

Using the Karush-Kuhn-Tucker condition γ i jUi j = 0 and η i jVi j = 0, we
get

(−XVT +UVVT )i jUi j = 0

(−UT X+UT UV+ µVL)i jVi j = 0 (6)

Introduce
L = L+−L− (7)

where L+
i j = (|Li j|+Li j)/2 and L−i j = (|Li j|−Li j)/2.

Substitute Eq.(7) into Eq.(6), we obtain

(−XVT +UVVT )i jUi j = 0

(−UT X+UT UV+ µVL+−µVL−)i jVi j = 0 (8)

Eq.(8) leads to the following updating formula

Ui j ← Ui j

√
(XVT )i j

(UVVT )i j

Vi j ← Vi j

√
(UT X+ µVL−)i j

(UT UV+ µVL+)i j
(9)

Table 1 shows the experimental results of the methods on the ORL
data set, where the value in each entry represents the average recogni-
tion accuracy of 20 independent trials, and the number in brackets is the
corresponding projection dimensionality.

Table 1: Face Recognition accuracy on the ORL data set. The number in
brackets is the corresponding projection dimensionality.

Method 2 Train 3 Train 4 Train
Baseline 70.67 78.88 84.12
PCA 70.67(79) 78.88(118) 84.21(152)
LDA 72.80(25) 83.79(39) 90.13(39)
NPE 73.19(36) 84.29(54) 91.06(73)
NMF 70.87(97) 78.98(81) 84.48(95)
LNMF 71.73(178) 81.09(168) 86.31(195)
DNMF 74.00(75) 83.32(84) 88.10(74)
NPNMF 75.31(200) 84.73(94) 91.35(81)

We can see that our method outperforms other dimensionality reduc-
tion methods on the ORL data set. The superiority of our method may
arise in the following two aspects: (1) local linear embedding assump-
tion [4] [1], which preserves the local geometric structure of the data. (2)
the nonnegativity, inheriting from NMF, which is suitable for nonnegative
data, e.g. image data.
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