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Abstract

We propose a novel algorithm for incrementally reconstructing the visual hull in dy-
namic scenes by exploiting temporal consistency. Using the difference in the silhouette
images between two frames we can efficiently locate the scene parts that have to be up-
dated using ray casting. By only concentrating on the parts of the scene that have to be
checked for changes, we achieve a significant speed up over traditional methods, which
reconstruct each frame independently. Our method does not use any kind of scene model
and works regardless of the number and shape of the objects in the scene. We test our
algorithm on sequences taken with a multi-camera system and perform a detailed perfor-
mance analysis showing that our method outperforms other existing methods.

1 Introduction

Visual hull reconstruction is the process of generating three dimensional scene geometry
from silhouette images captured from different views of a scene. The visual hull is the shape
maximally consistent with its silhouette projection [10]. It has been popular due to its good
approximating qualities for many objects and its ease and speed of implementation. It is
commonly used as a starting point for more elaborate 3D reconstruction methods [14] and
finds application in many real-time 3D reconstruction systems due to its good performance
[9, 16]. However, current reconstruction systems do not take temporal consistency in the
scene into account. Instead, they favor to highly parallelize the computation of the visual
hull in order to obtain real-time performance. In contrast to these approaches, we propose
an incremental voxel based visual hull reconstruction method for dynamic scenes using ray
casting. By exploiting the fact that there usually occur only small changes between consec-
utive frames, we can reduce the runtime and calculation complexity in these environments.
This allows us to perform real-time reconstruction on a standard processor without having to
parallelize the computations.

In the remainder of the paper we give an overview of related work on visual hull re-
construction. Then we propose our new approaches followed by a mathematical analysis.
Finally a comparison of different visual hull reconstruction algorithms including our incre-
mental approach is presented.
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(a) (b) (c)

Figure 1: The rotating teapot model: (a) Rendered views from two different cameras in three
successive time steps; (b) Corresponding silhouette and difference images with highlighted
changed areas. Red pixels have been removed from the foreground since the previous time
step and green pixels have been newly added in the current time step; (c) Colored recently
removed and added voxels from two novel views.

2 Related Work
Most visual hull reconstruction methods use a volumetric approach [13, 15, 19]. In this
approach the reconstruction volume is discretized into voxels, which are then projected into
the silhouette images. If the area that the voxel projects into belongs to the foreground in all
silhouette images then the voxel is marked as occupied otherwise it is marked as empty. One
common approach for speeding this approach up is to use an octree representation [13, 19].
There also exist other approaches for visual hull reconstruction that do not use a volumetric
representation of space. These are generally refered to as surface-based approaches [5, 8,
11].

Although there are methods for performing time consistent reconstructions in the context
of multi-view reconstruction [17, 20], there is little work dealing with temporal visual hull
reconstruction. Cheung [6, 7] consider the problem of aligning multipe silhouette images of
a non-rigidly moving object over time in order to improve the quality of the visual hull. How-
ever, this is quite different from our approach. More recently Aganj [1] proposed a method
for spatio-temporally consistent visual hull reconstruction by performing a 4D reconstruc-
tion over the whole sequence using Delaunay meshing. The drawback of their method is
that it only works offline, requiring the whole sequence to be available for performing the
reconstruction. This precludes a real-time online use of their method. In addition the runtime
of their method is far from real-time due to its high computational complexity.

Our approach does not make any assumptions about the number or the shape of the
objects in the scene and does not use any additional information other than that provided by
the silhouette images. Our results are identical to the results one would obtain when using
a normal reconstruction method for each frame but the computation time is considerably
reduced leading to real-time performance on an off-the-shelf computer.

3 Incremental Reconstruction Approach
In dynamic scenes such as those captured by multi-camera systems the changes between
frames are limited by the speed at which the objects in the scene move or deform. Hence, the
number of voxels that change in the reconstruction does not alter dramatically. Therefore it is
inefficient to reconstruct each frame independently. Theoretically the only voxels that have
to be updated to transform the previous reconstruction into the current one, are the ones with
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changed occupancy. In the following we will call this subset of voxels the Changed Set. In
practice we normally cannot compute the Changed Set directly. Therefore, we approximate
it by a superset, which we call the Search Space.

In this work we propose a Search Space, whose size is close to the Changed Set. The
main idea is to consider the changes in the silhouette images between the previous and the
current frame, since they are caused by the change in voxel occupancy. Using ray casting
[2] we efficiently find these changed voxels. Since most of the search process is done in two
dimensional image space, the required amount of operations is reduced noticeably compared
to performing a full reconstruction. Figure 1 illustrates our method for three frames of a
rotating teapot. Figure 1(b) shows the change in the silhouettes (green being newly added
foreground pixels and red being the removed foreground pixels), while Figure 1(c) shows
the added (green) and removed (red) voxels between the frames. It is clear that the number
of changed voxels is small compared to the total number of voxels.

The visual hull in the first frames can be reconstructed using any existing reconstruction
method. The first step for updating the reconstruction is to compute the difference images.
This allows us to determine which pixels were added or removed from the foreground. We
then find the corresponding voxels by traversing the rays starting from the camera center and
passing through the changed pixels.

However, there usually is not a one-to-one relation between voxels and pixels due to
different resolutions and the effects of perspective projection. Normally the voxel resolution
is chosen to be smaller than the pixel resolution; hence the projection of most voxels extends
to more than one pixel. In this situation the occupancy of each voxel may be checked multiple
times, when using ray casting. Despite that, this redundancy can be reduced considerably
by using an appropriate sub-sampling depending on the scene configuration and resolution.
In other words, the changed state can be computed for a subset of pixels, achieved by sub-
sampling silhouette images, to obtain better correspondence between voxel and difference
images pixel resolutions.

The information about which pixels were added and removed is used to find the set of
removed and added voxels. While the set of voxels corresponding to the removed pixels
only have to be set to empty, the set of voxels corresponding to the added pixels have to be
checked for occupancy. This is done using the original silhouette images. Since we only
change the traversing process in the voxel space, the reconstructed visual hull produced by
our approach is equivalent to the ones produced by other visual hull reconstruction methods.
The implementation of the deletion and addition phase depends on the algorithm used. We
have developed two different algorithms based on this approach, which we will discuss in
the following two sections.

4 Ray Casting
Here, we explain our first algorithm for incremental visual hull reconstruction in dynamic
scenes, which uses ray casting to update the visual hull. For each changed pixel in the
difference images, we create a ray from the optical center of the camera passing through
the pixel and traverse all voxels, which the ray passes, using ray casting [2]. The size of
the search space in this implementation is equal to the number of voxels projecting into the
changed regions of the difference images.

All changes after the first frame can be reconstructed by an updating phase using this
approach. Even in the first frame, the whole visual hull can be computed using blank silhou-
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(a) (b)
Figure 2: The voxel traversing process: (a) Rays from removed pixels. Yellow voxels are
removed; (b) Rays from new pixels. Yellow voxels are added.

Algorithm 1 Pseudo code for the deletion phase in the ray casting method
1: for each image i in the sub-sampled difference images list do
2: for each removed pixel p in image i do
3: Create ray r from optical center passing through p
4: Set r to the first voxel in the reconstruction volume
5: repeat
6: Set occupancy state of the voxel at r to empty
7: until step r to the next occupied voxel is unsuccessful
8: end for
9: end for

ettes as the images from the previous time step. But the computation using this approach,
for the whole scene reconstruction, is redundant and the occupancy of some voxels might be
checked more than once.

In the deletion phase, the occupancy of all voxels lying on rays passing through removed
pixels (red in the images such as figure 1) is set to empty. This is because these areas are the
projection of removed voxels since the previous time step. This is illustrated in figure 2(a).
Algorithm 1 shows the pseudo code for the deletion process.

Algorithm 2 Pseudo code for the addition phase in the ray casting method
1: for each image i in the sub-sampled difference images list do
2: for each added pixel p in image i do
3: Create ray r from the optical center passing through p
4: Set r to the first voxel in the reconstruction volume
5: repeat
6: if voxel v at r is occupied then
7: Mark v as occupied
8: end if
9: until step r to next empty voxel is unsuccessful

10: end for
11: end for

To complete the updating process, after removing deleted voxels, newly occupied voxels
are added in the addition phase. Figure 2(b) and the pseudo code given in algorithm 2 show
the process of creating newly occupied voxels in the reconstruction results of the previous
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(a) (b)
Figure 3: Two consecutive time steps of a dynamic 2D scene viewed by two cameras: (a)
Silhouettes and calculated difference images for each camera; (b) Ray buffer, storing infor-
mation about surface voxels.

phase. The addition phase of this method is similar to the deletion phase. However, before
creating new voxels, their occupancy has to be checked. A voxel is marked as occupied if its
projection on all silhouette images, maps to a foreground pixel.

Since ray casting is completely implementable on a GPU [12, 18], this algorithm also
can be implemented on modern graphical processors.

5 Ray Buffers
Although the ray casting approach described in the previous section is already very efficient,
we can further improve the performance by storing more data from the previous time step.
To this end we store per pixel ray information as described in [3, 4] and shown in figure 3 for
each time step. We save the basic ray information such as starting point, direction and current
voxel for later use in successive time steps. We call this stored information ray buffers. This
information helps us to define an even smaller search space.

This data has to be taken into account during both the deletion and the addition phase
of the algorithm and updated, whenever any change happens on the surface voxels. In ray
buffers, we only store information for surface voxels for reducing the discussed per voxel
occupancy checking redundancy. Although by using this method we check fewer voxels, it
is not always faster than the ray casting approach due to the extra processing for updating
the ray buffers.

The deletion phase is similar to the ray casting method, however now we directly find
the first surface voxel which should be removed using the information in the ray buffers.
In large scenes this reduces the search space size and consequently the amount of required
computations for finding the first visible surface voxel noticeably.

On the other hand, in the adding phase, we cannot directly find new voxels using the
available data in the ray buffers, because we only store information about the current surface
voxels. However, for improving performance, after finding the first new voxel - using the
same approach as in the addition phase of the ray casting method - we obtain and update
the neighboring new voxels using a 3D region growing method in voxel space, starting on
the newly added voxel. Then, by projecting, we mask out all corresponding changed pixels
to recently added surface voxels from all difference images. This helps us to avoid further
redundant processing.
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6 Analysis

Our proposed approaches update the scene based on the changed areas in the images, so
each change in the visual hull of a model should be reflected in at least one of the silhouette
images used for reconstruction. In this section we show the correctness of this assumption
through detailed mathematical analysis.

As described before, the scene volume is divided into voxels. We define the set V such
that it contains all voxels in the scene. We will refer to each voxel with v. For constructing the
visual hull, we use n calibrated cameras viewing the scene. The set C contains all cameras
and we will refer to each individual camera in this set using c1, c2, ..., cn. Each of these
cameras has an associated projection matrix Pci . Pci(U) is the 2D projection of a 3D point
U using camera ci. Silhouette images for each of these cameras are referred to using Ici .
The value in the silhouette image at location u is given by Ici(u). In the silhouette images
pixels can have two distinct values, foreground and background. We refer to foreground with
value one and to background with value zero. Extending these notations for dynamic scenes
requires adding a time step index. For example for referring to the camera image ci in time
step t we use It

ci
and so on.

Using this notation, we will represent the visual hull reconstruction process. The re-

constructed visual hull of a scene is defined as D =
{

v ∈V | ∀
c∈C

(Ic(Pc(v)) = 1)
}

, which is a

subset of V including only occupied scene voxels. D contains all voxels, whose projections
are mapped to foreground pixels in all images. The state of a voxel can change between two
time steps t and t +1 (Changed Set). Unchanged voxels are either empty or occupied at both
times, while changed voxels are occupied at t and empty at t +1 or vice versa.

For creating the voxel representation of the scene at time t + 1 it is sufficient to only
invert the state of the voxels which are in the Changed Set. Formally the Changed Set is
given by:

Lemma 1: The set of voxels S, defined as

S =
{

v|(v ∈ Dt)∧ ∃
c∈C

(It+1
c (Pc(v)) = 0))

}⋃{
v|(v /∈ Dt)∧ ∀

c∈C
(It+1

c (Pc(v)) = 1)
}

contains all voxels in the changed set.
Proof: The equation defining the set S is the union of two sets. The left is the set of

voxels occupied at time t (v ∈ Dt ) and empty at time t + 1 . The second term on the left
( ∃
c∈C

(It
c +1(Pc(v)) = 0)) is based on the observation that there should be at least one camera

in which the projection of v at time t + 1 is zero if this voxel is actually empty. The right
part adds the set of voxels, which are empty at time t (v /∈ Dt ) and occupied at time t + 1.
The second term on the right ( ∀

c∈C
(It+1

c (Pc(v)) = 1)) is the set of occupied voxels, since by

definition their projection on the images of all cameras at time t +1 is one. �
Lemma 1 gives us a clear definition for the optimum set of voxels, which only contains

the changed voxels at time t +1 with respect to time t. However, computing the subset S itself
is not possible directly. Therefore, we propose a superset, which approximates S closely.

Definition: We define two new binary images IRV
c , IAV

c for any given camera at times
t and t + 1 and compute their corresponding values at the location u as described by the
following formulas:

IRV
c (u) = It

c(u)∧¬It+1
c (u) , IAV

c (u) = ¬It
c(u)∧ It+1

c (u)
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IRV
c represents the projection of the removed voxels, whose disappearance causes differences

between It
c and It+1

c and IAV
c represents the projection of the added voxels, whose appearance

causes differences between It
c and It+1

c . In figure 3(a) the red and green colored areas are
showing IRV

c and IAV
c respectively.

Next we will show that if any change happens in the scene, which can be captured by
the visual hull, we will see it in the difference images. The next theorem proves that our
proposed search space is a superset for the Changed Set.

Theorem 2: The subset E, which is defined as described below, contains all changed
voxels between times t and t +1:

E =

{⋃
c∈C

{
v|IRV

c (Pc(v)) = 1
}}⋃{⋃

c∈C

{
v|IAV

c (Pc(v)) = 1
}}

Proof: Again, the above equation contains the union of two sets. The left part is denoting
all voxels for which there exist at least one camera with value one at the voxel projection
coordinate on the corresponding image IRV of that camera. Similarly on the right side of the
union operator, we have a subset of voxels, denoting all voxels for which there exist at least
one camera with value one at the voxel projection coordinate on the corresponding image
IAV of that camera. By rewriting the above equation we obtain:

E =
{

v| ∃
c∈C

(
IRV
c (Pc(v)) = 1

)}⋃{
v| ∃

c∈C

(
IAV
c (Pc(v)) = 1

)}
By replacing IRV

c , IAV
c from the above definitions we get:

E =
{

v| ∃
c∈C

(
It
c(Pc(v)) = 1∧ It+1

c (Pc(v)) = 0
)}
∪
{

v| ∃
c∈C

(
It
c(Pc(v)) = 0∧ It+1

c (Pc(v)) = 1
)}
⊇

{
v| ∀

c∈C

(
It
c(Pc(v)) = 1

)
∧ ∃

c∈C

(
It+1
c (Pc(v)) = 0

)}
∪
{

v| ∃
c∈C

(
It
c(Pc(v)) = 0

)
∧ ∀

c∈C

(
It+1
c (Pc(v)) = 1

)}
=

{
v|(v ∈ Dt)∧ ∃

c∈C

(
It+1
c (Pc(v)) = 0

)}
∪
{

v|(v /∈ Dt)∧ ∀
c∈C

(
It+1
c Pc(v)) = 1

)}
= S

For reaching the third line, we have used the fact that if a voxel can be seen from all cameras
at time t, ( ∀

c∈C
(It

c(Pc(v)) = 1)), it is part of the reconstructed volume at time t, which gives

v ∈ Dt . Similarly, if there exists at least one camera from which the voxel can not be seen
( ∃
c∈C

(It
c(Pc(v)) = 0)) at time t, that voxel is empty at time t (v /∈ Dt ). Using the result of

lemma 1 and the fact that S⊆ E the correctness of this theorem can be stated. �

Conclusion 1: For any newly removed voxel from the scene at time t + 1, which alters the
visual hull, there should be at least one IRV image, that reflects this change.
Conclusion 2: For any newly added voxel into the scene at time t +1, which alters the visual
hull, there should be at least one IAV image, that reflects the change.

This theorem helps us to define a new search space E, whose size is close to the real
changed set S as described in lemma 1. Moreover, because IAV and IRV are made up from
the projection of changed portions of the scene we get a small 2D area to consider in each
image. In other words, the size of the search space is directly related to the size of the
changed portion of the scene; for instance if the scene is static, the search space will be
empty because IAV and IRV are equal to zero.
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(a) (b)

Figure 4: The silhouette and difference images and the reconstructed volume rendered from
a novel view: (a) Crane dataset; (b) Samba dataset.

7 Results

We have tested our proposed incremental reconstruction approaches as well as previous
methods on both synthetic and publicly available real data sets (provided by Daniel Vla-
sic [21], see figure 4), comparing them on different aspects such as run time and the number
of occupancy checks with various voxel and image resolutions. These results show the sig-
nificantly improved performance of our incremental approaches. We achieve a speed-up of
up to 10 times over the other reconstruction methods.

Figure 5: Runtime and occupancy check count in the first fifty frames of the Samba (left)
and Swing (right) dataset at two different voxel resolutions. Our incremental approach out-
performs the other methods in both categories.

Figure 5 shows the results we obtained on two real data sets with respect to runtime
and number of checked voxels at different volume resolutions. Since the size of the search
space of our approach is directly related to the size of the changed portion of the model, as
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Figure 6: Dependency of the different algorithms on the voxel resolution (left) and the model
size (right) using frame 27 of the Crane dataset.

Figure 7: The left diagram shows the effect of using different image resolutions (frame 11
of the Bouncing dataset). The right diagram shows the performance with different numbers
of cameras (frame 5 of the Teapot dataset). The volume resolution used was 2563.

expected, both the number of occupancy checks and the runtime are related to these changes.
For showing this, we computed a change ratio value for each model by dividing the number
of changed voxels by the total number of voxels in the model. A rescaled version of these
change ratios is shown in figure 5 with a black dashed line. Our ray casting and ray buffer
method are consistently faster than the octree-based and the direct volumetric reconstruction
approach, while also considering less voxels. This is expected, since we consider only the
changed parts of the scene in our computations.

Unlike previous reconstruction methods, whose time and computational complexity are
strongly related to the voxel resolution, the proposed dynamic approaches have less direct
dependency on the voxel resolution. However, changing the voxel resolution affects the op-
timum sub sampling, which itself has influence on overall performance. Figure 6 compares
runtimes with various voxel resolutions and model sizes. The model size is increased by de-
creasing the size of the reconstruction volume. Note that having larger models in the scene
decreases the run time of the ray buffer approach due to the larger number of surface voxels,
which have to be processed.

On the other hand, as shown in figure 7, image resolution and the number of cameras
have little impact on the performance of the previous reconstruction methods, but it can
affect our approaches noticeably, because of their 2D image based search space. Generally,
without sub-sampling the performance of these algorithms is directly related to the number
of cameras and the image resolution. However, this effect can be reduced by using sub
sampling in the images.



10 BIGDELOU et al.: INCREMENTAL VISUAL HULL RECONSTRUCTION

8 Conclusion
We proposed a new incremental visual hull reconstruction approach for time varying scenes.
We use the difference in the silhouette images between two frames to efficiently find po-
tentially changed voxels in the scene. We suggested two ray-casting-based algorithms for
this, one of which stores additional per-frame information for speeding up the computations.
Furthermore, we showed the validity of our method using a mathematical analysis and tested
them against several datasets. We demonstrated that our incremental method significantly
improves the performance of the reconstruction process, outperforming existing reconstruc-
tion methods and making it suitable for real-time applications.
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