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Abstract

We present log-linear mixture models as a fully discriminative approach to object cate-
gory recognition which can, analogously to kernelised models, represent non-linear de-
cision boundaries. We show that this model is the discriminative counterpart to Gaussian
mixtures and that either one can be transformed into the respective other. However, the
proposed model is easier to extend toward fusing multiple cues and numerically more
stable to train and to evaluate. Experiments on the PASCAL VOC 2006 data show that
the performance of our model compares favourably well to the state-of-the-art despite the
model consisting of an order of magnitude fewer parameters, which suggests excellent
generalisation capabilities.

1 Introduction
Recognising object classes is one of the fundamental problems in computer vision and many
approaches have been presented in the past. In recent years most approaches in this area
(with very few exceptions, e.g. Torralba et al. [25]) have focused on local image descriptors,
e.g. [2, 4, 7, 8, 10, 11, 13, 14, 17, 20, 22, 23, 24].

One very common approach to determine whether an object of a certain category is
contained in an image is the bag-of-visual-words approach [3, 4, 24], which consists of
three steps: (1) local descriptors are extracted from all images, (2) a vector quantisation
technique is applied in order to obtain low-dimensional (often in the order of a few thousand)
histograms of local features, (3) a (commonly discriminative) model is used as a classifier to
determine whether the object of interest is present in the images.

This approach, although in practise leading to good results, has several problems. One
problem is the vector quantisation step, in which most appearance information is deliberately
discarded. The simplest approach to avoiding hard quantisation is the use of soft cluster as-
signments (e.g. [7]), but this only superficially avoids this problem. Boiman et al. [2] also
observed this problem and instead of vector quantisation use a nearest neighbour classifier
similar to Paredes et al. [21], which leads to improved performance. Hegerath et al. [10]
use a Gaussian mixture classifier directly in order to avoid hard quantisation. Their model,
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although it is generative in principle, is refined using a discriminative training step in order
to improve results. Minka [19] noted that discriminative training of generative models is not
a theoretically clean method. Lasserre et al. [13] propose a model for object recognition fol-
lowing Minka’s ideas, which allows to smoothly fade between discriminative and generative
models. Grabner et al. [8] extend a boosted, discriminative model by modifying the training
criterion in order to also incorporate generative aspects. Note, that most bag-of-visual-words
models also effectively fuse generative and discriminative models: the quantisation step of-
ten applies a generative model (e.g. Gaussian mixture densities obtained using k-means) in
order to obtain a fixed length feature vector which is then classified using a discriminative
model.

Another problem with the bag-of-visual-words approaches is that it is generally difficult
to incorporate spatial information. A direct approach is to consider triplets of features [27],
but most approaches apply post-processing steps in order to verify spatial consistency [11,
22]. Leibe et al. [14] use a visual codebook and each word votes in a continuous voting space
for the centre of the object to be detected, which allows to jointly recognise and segment the
object of interest with pixel-level accuracy.

In the approach presented here, we address all these problems jointly: (i) we avoid hard
vector quantisation, (ii) the model is fully discriminative, and (iii) different information cues,
such as appearance and position information, can easily be fused. Furthermore, we show in
experiments, that the results obtained with the proposed method are comparable to the state
of the art, although the obtained models are very small in the number of parameters and thus
very likely robust w.r.t. overfitting. Additionally, we show that the model is closely related to
the Gaussian mixture model of Hegerath et al. [10] (cp. Section 2.3), but avoids the inelegant
training by using a generalised log-linear model of the class posteriors.

2 Log-Linear Mixtures
Log-linear models are well-understood discriminative models for which efficient training
methods exist. In log-linear models, the class-posterior p(c|X) for an observation X is di-
rectly modelled as

p(c|X) = exp(gθ (X ,c))
∑

C
c′=1 exp(gθ (X ,c′))

, (1)

where commonly gθ (X ,c) = αc +λ T
c X , where θ = {αc,λc} are the model parameters to be

trained.
One problem with log-linear models is that they can only model linear decision bound-

aries. To circumvent this problem, the kernel trick can be applied in order to train the model
in a higher dimensional feature space [9]. The simplest kernel which can be used is a poly-
nomial kernel of degree 2, which can be implemented directly without applying the kernel
trick by changing gθ (X ,c) to gθ (X ,c) = αc +λ T

c X +XT ΛcX in order to incorporate second
order (quadratic) features. The resulting model is commonly called a log-linear model with
second order features.

Another option to extend this model is to create a log-linear mixture model by incorpo-
rating a hidden variable i

p(c|X) = ∑i p(c, i|X) = ∑i exp(gθ (X ,i,c))
∑

C
c′=1 ∑i′ exp(gθ (X ,i′,c′))

, (2)
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where gθ (X , i,c) = αci +λ T
ci X . Now, let X be an image, represented by a set of local descrip-

tors {xL
1} = {x1, . . . ,xL}, and assume (analogously to our previous work in [10], cp. also

Eq. (12)- (14)) that the individual xl are independent, then the class posterior becomes

p(c|{xL
1}) =

1
Z({xL

1})

L

∏
l=1

I

∑
i=1

exp(gθ (xl , i,c)), (3)

where Z({xL
1}) = ∑c′∏l ∑i exp(gθ (xl , i,c′)).

By choosing a sufficiently large number of mixture components I, it is possible to model
arbitrarily complex decision boundaries. Additionally, this model can be extended using
kernels to add further flexibility. Here, we keep the kernel simple (i.e. linear or polynomial)
and investigate the capabilities of the mixture model.

2.1 Training and Maximum Approximation
To train the log-linear mixture model, we compute the derivatives and apply the LBFGS
gradient descent method [15]. The training criterion to be maximised is

F(θ) = ∑
n

log pθ (cn|Xn), (4)

where Xn is the n-th training image, cn is the corresponding class, and pθ (cn,Xn) is the
model of the class posterior probabilities using the parameters θ . Note, that the training of
the proposed model is not a convex optimisation problem.

However, if we apply maximum approximation and keep the assignment i of training
observations to the model’s components fixed in Eq. (3), we can consider the pairs (c, i) as
pseudo classes. Note that maximum approximation is known to be a good approximation for
functions from the exponential family and is commonly used in the Viterbi algorithm [6].
Then, the training of the resulting model is identical to training a log-linear model over the
pseudo classes. Thus, we obtain a convex optimisation problem. The resulting model is

p(c, i|X) = exp(gθ (X ,i,c))
∑c′ ∑i′ exp(gθ (X ,i′,c′)) . (5)

Combining Eq. (3) and Eq. (5) leads to

p(c, iL1 |{xL
1}) =

1
Z({xL

1})
exp(∑

l
gθ (xl , il ,c)), (6)

with Z({xL
1}) unchanged from Eq. (3) and iL1 = i1, . . . , iL is the assignment of the local de-

scriptors xl to the model’s mixture components.
Using an alternating training method, taking turns between updating the model parame-

ters and the mixture component assignments iL1 , convergence to a local optimum is guaran-
teed, since the update of the model parameters with fixed mixture component assignment is
a convex problem and the update of the mixture component assignment cannot deteriorate
the training criterion.

Additionally, the maximum approximation can also be applied in the denominator, which
then leads to the following form of the posterior probability

p(c|{xL
1}) = exp(∑l maxi gθ (xl ,i,c))

∑
C
c′=1 exp(∑l maxi′ gθ (xl ,i′,c′))

, (7)
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which can be evaluated efficiently and which we will use throughout the experiments in
the following. This form does not have the semi-convexity property described above but in
practice can be optimised as efficiently. Note, that during training, the maximising i is fixed
during parameter training.

Regularisation. Regularisation is a common technique in many machine learning ap-
proaches to reduce overfitting. We use an L2 regulariser which leads to the following modi-
fied training criterion

F(θ ,γ) = ∑
n

log p(cn|Xn)− γ||θ ||2, (8)

where ||θ || denotes the norm of all model parameters in one vector, and γ is a weighting
factor that can be used to control the strength of the regularisation. This is equivalent to
imposing an N (0,1)-prior on all model parameters in Bayes’ learning.

2.2 Cue Fusion

One advantage of the proposed model over the closely related Gaussian mixtures is that the
log-linear approach can very easily be extended to incorporate features of different types.
Related approaches (under the name “maximum entropy approach”) are frequently used for
model- and feature combination in natural language processing [1].

Different Local Descriptors. Assuming, we have S different cues with Ls individual local
features each, we can easily extend the model to incorporate all the cues, without explicitly
having to account for their scaling and location in feature space, resulting in the following
form for p(c|X):

p(c|X) =
exp(∑s ∑

Ls
l=1 maxi{αcsi +λT

csixsl})

∑
C
c′=1 exp

(
∑s ∑

Ls
l=1 maxi{αc′si +λT

c′sixsl}
) . (9)

Note that in this model, the descriptors of the individual cues do not have to be extracted
from the same interest points but that they can be entirely unrelated.

Spatial Information. Analogously to the fusion of different appearance cues it is also pos-
sible to incorporate other cues such as the spatial layout of the individual features. In order
to integrate spatial information suitably it is necessary to formulate features that describe the
neighbourhood of the considered point.

In our representation, the neighbourhood of a point is described by the set of descriptors
which were extracted at points from its neighbourhood.

That is, a local feature xl from position (uv)l is enriched by the set NNk(xl) of the de-
scriptors xγ extracted at the k nearest neighbours (uv)γ of its extraction position.

NNk(xl) =
{

xγ | (uv)γ ∈ arg
k

min
γ∈{1,...,L}

{||(uv)l− (uv)γ}||
}

. (10)
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Given this set of neighbours we extend the discriminant function g(x,c) to incorporate their
appearance, which we model using a mixture:

gθ (x,c) =
L

∑
l=1

max
i

αci +λ
T
ci xl + ∑

xγ∈NNk(xl)
max

j

{
βci j + µ

T
ci jxγ

} . (11)

The new parameters βci j and µci j allow us to capture appearance variation among the typical
neighbours of a model component. For consistency, we use the maximum approximation
analogously to Eq. (7). The size k of the set of neighbours indirectly models the size of the
local structure that is considered. Alternatively, one could determine the set of neighbours
using a distance threshold resulting in different numbers of neighbours for each xl .

2.3 The Relationship to Gaussian Mixtures
The presented model has an interesting relationship to Gaussian mixtures. In the following,
we show, how Gaussian mixtures can be transformed into the log-linear form of our model,
and how one can be interpreted as the respective other [12]:

We start from the posterior of a Gaussian mixture model

p(c|{xL
1}) =

1
Z(x)

p(c)
L

∏
l=1

I

∑
i=1

p(i|c)N (xl |µci,Σci) (12)

=
1

Z(x)
p(c)

L

∏
l=1

I

∑
i=1

p(i|c)

|2πΣci|
1
2

exp
(
− 1

2 (xl−µci)T
Σ
−1
ci (xl−µci)

)
(13)

=
1

Z(x)

L

∏
l=1

I

∑
i=1

exp
( 1

L log(p(c))+ log(p(i|c)) − 1
2 log(|2πΣci|) (14)

− 1
2

(
xT

l Σ
−1
ci xl−2xT

l Σ
−1
ci µci + µ

T
ciΣ
−1
ci µci

))
Then, it can be seen that choosing the parameters αci,λci, and Λci as follows leads to the

log-linear model in Eq. (3).

αci =
1
L

log(p(c))+ log(p(i|c))− 1
2

log(|2πΣci|)−
1
2

µ
T
ciΣ
−1
ci µci (15)

λci = Σ
−1
ci µci (16)

Λci = −1
2

Σ
−1
ci . (17)

By solving the above equations for the parameters µ,Σ, and p(i|c) (and possibly making
Σci positive definite by adding a positive constant to the diagonal), a Gaussian mixture can
be obtained from a log-linear mixture.

The resulting model uses a quadratic decision function gθ (·), because we started from a
Gaussian model with full, class-specific covariance matrix. If the Gaussian model uses class
and cluster pooled covariances, the second order terms cancel out, and the resulting model
is first order log-linear.

3 Experimental Evaluation
In this section, we evaluate our model and examine the influence of various parameters on
its performance.
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(a): bicycle (b): bus (c): car (d): cat (e): cow

(f): dog (g): horse (h): motorbike (i): person (j): sheep

Figure 1. PASCAL 2006 Example Images. On example image for each of the 10 classes considered in
the PASCAL 2006 evaluation.

3.1 Dataset
We use the PASCAL Visual Object Classes Challenge (VOC) 2006 dataset [5]1 for evalua-
tion. The set consists of ten classes comprising man-made objects, animals and people. For
each class, the task is to detect whether an object of the class is present in an image. For each
task, about 2600 training images and about 2700 testing images are given. The performance
on this dataset is evaluated in AUC on the ROC curve. An example image from each of the
ten classes considered in the PASCAL VOC 2006 is given in Figure 1.

3.2 Experimental Setup
We employ a wavelet interest point detector [16] and extract appearance-based features of
size 19x19 pixels at the 200 most salient interest points. The patches are reduced to a dimen-
sionality of 40 using PCA transformation. For all our experiments, the regularisation weight
was tuned on the training data. We found that, in particular for the setups with linear gθ (·),
the regularisation weights are very small. For the experiments in the following we initialise
the log-linear mixture from a mixture of Gaussians in order to have a good starting point for
the training procedure.

In the following we present the experimental evaluation of the proposed model. First,
we evaluate the performance of our model depending on the number of mixture components
used and the impact of first and second order features. We also evaluate the impact of spatial
and additional appearance cues. Finally, we compare the obtained results to state of the art
methods and to the closely related Gaussian mixture densities.

Number of mixture components. First we evaluate the basic parameters of the proposed
model and compare it to the standard log-linear models from which we started. In Figure 2
(a), the obtained AUCs for different numbers of mixture components are shown. The left-
most point in the plot corresponds to standard log-linear models. It can be seen that a very
small number of mixture components leads to suboptimal results. This is probably due to in-
sufficient flexibility in the model. By adding more mixture components, flexibility is added
to the model and results are improved until they level out at about 32 mixture components
per class. Thus, in the following, we perform all experiments with this setting.

1http://www.pascal-network.org/challenges/VOC/voc2006
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Figure 2. (a) Number of mixture components. The plot shows obtained results as a function of the
number of mixture components for the individual classes (in dotted lines) and for the average over all
classes (think solid line). (b) Second order models. A comparison of models using first and second
order features respectively for three classes from the PASCAL dataset

For better insight into the obtained results, in the following, we give the average over all
10 classes (AVG10) and the results for the three classes “car” (as a representative for a rel-
atively easy, rigid, man-made class), “person” (as a representative for a strongly articulated
class), and “sheep” (as a representative for a natural, but still rather rigid class).

Second Order Features. Another option to add flexibility to the model is to incorporate
non-linear features into the discriminant function gθ . In Figure 2 (b), we compare the per-
formance of models with linear and quadratic features for three of the ten classes. It can be
seen that the models with second order features slightly outperform those without for small
numbers of mixture components. With 32 or more mixture components the models perform
approximately equally well, which shows that the added flexibility of the second order model
is not advantageous. In the following experiments we will use linear models, since they are
faster, more reliably trainable, and, given a sufficient number of mixture components, per-
form equally well.

Additional Appearance Features. As described in Section 2.2, it is possible to fuse mul-
tiple cues in the proposed model. We evaluate this by using combinations of different ex-
traction positions. In addition to the wavelet-based interest point detector from the baseline
setup, we use a difference of Gaussians detector and random extraction positions [20] in
order to also capture homogeneous image regions.

The results from these experiments are shown in Table 3.2. It can be seen that the ad-
ditional extraction points clearly improve categorisation. On average, the improvement is
0.03 points AUC, and the improvement is consistent throughout all tasks. For comparison
we also performed an experiment where all cues are treated jointly, which is possible in this
setup since we extract the same type of descriptor. In further experiments we extracted more
wavelet-based interest points per image, but none of these experiments led to any improve-
ment over the baseline results. Thus, we conclude that the separate modelling of these cues
allows for a more suitable representation of the data and thus to better recognition accuracy.

Note that it is also possible to incorporate different descriptors such as colour descriptors
[26], SIFT features [17], or MSERs [18], but we omit this here for the sake of brevity.

Spatial Features. Results from different setups incorporating the spatial structure of the
neighbourhood are given in Table 3.2. To allow for separating the effect from the different
appearance cues, we run this experiment on the baseline setup. In these experiments we
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Table 1. The AUC results
obtained using combinations of
different extraction points on
three classes of the PASCAL
2006 task and for the average
over all 10 classes.

Wavelet DoG Random car person sheep AVG10

X 0.88 0.72 0.87 0.82
X X 0.90 0.75 0.89 0.85
X X X 0.91 0.76 0.91 0.86

Table 2. Results using the spatial layout information in our
model on the three PASCAL tasks car, person and sheep,
and the average over all 10 tasks. For these experiments
we kept the number of neighbours at 5 and varied the
number J of spatial mixture components in Eq. (11).

J car person sheep AVG10

1 0.88 0.73 0.86 0.81
2 0.90 0.72 0.84 0.82
3 0.87 0.73 0.85 0.80
4 0.88 0.71 0.86 0.81

used k = 5 neighbour-points for each descriptor xl , leading to an average distance of 25
pixels between a descriptor and its neighbours which is slightly below the size of the object
structures in this dataset. Like in the baseline setup, we chose a fixed number of 32 mixture
components per class. Each of these components contains J spatial mixture components
which model the appearance of the neighbourhood. It can be seen that setting J = 2 seems
to be the best choice. This is also consistent with the observation that in general a relatively
small number of mixture components is sufficient to obtain good performance. The spatial
extension has shown to help with the classification of articulated classes like cat, dog and
person as well as classes that show strong variations in appearance, like bus or car. For more
uniformly shaped classes like cow and sheep, the extension does not lead to any improvement
but might even deteriorate the performance due to overfitting.

In informal experiments we also experimented with different values for k and found the
results to be relatively robust between 3 and 10 neighbours (corresponding to neighbour-
hoods of 10-50 pixels). Using more or less neighbours, hardly any improvement is possible.
If too few neighbours are considered, the neighbourhood is not represented well enough,
and if too many neighbours are considered the model is weakened in particular for the ar-
ticulated classes because the considered neighbourhood is too large and thus global spatial
arrangements are considered which might not be suitable for these classes.

Comparison to GMDs As described above, the proposed model is closely related to the
Gaussian mixtures approach, and thus it opens the possibility to directly compare the dis-
criminative and the generative model. In Figure 3.2, we show the obtained AUC results
for three of the ten PASCAL classes for both GMDs and log-linear mixtures with different
numbers of mixture components.

It can be seen that the discriminative log-linear mixtures outperform the generative Gaus-
sian models for any number of mixture components. In particular, even log-linear mixtures
with few mixture components outperform GMDs with more mixture components. For exam-
ple on the person task, a GMD with 128 components scores 0.69 AUC whereas a log-linear

 0.6
 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 1  2  4  8  16  32  64 128

A
U

C

mixture components

car GMD
person GMD
sheep GMD

car LLMM
person LLMM
sheep LLMM

Figure 3. GMDs vs. Log-linear Mixtures.
The AUC obtained using different
numbers of mixture components in both,
GMDs and log-linear mixtures.
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Table 3. Comparison of the results of log-linear mixtures on the PASCAL VOC 2006 task with other
approaches.

approach car person sheep AVG10 params. time

(single) log-linear model 0.86 0.67 0.82 0.79 82 1
log-linear mixture model (baseline) 0.88 0.72 0.87 0.82 2624 35

+ second order features 0.90 0.77 0.88 0.85 55104 130
+ additional appearance features 0.91 0.76 0.91 0.86 7744 40
+ spatial layout information 0.90 0.72 0.84 0.82 7872 40

GMDs (tuned + spatial + disc) [10] 0.94 0.72 0.89 0.86 248832
BoF/Spatial Pyramid Everingham et al. [5] 0.98 0.86 0.96 0.94

mixture with 2 components already achieves a score of 0.71 AUC. This shows that for the
task at hand the discriminative model is better suited and is also consistent with the obser-
vation of [10] that the discriminative refinement of their model is crucial to obtain good
results.

3.3 Comparison to the State of the Art

In Table 3, we compare the obtained results to the state of the art. The top block of the table
shows the performance of the different variants of our proposed method and the bottom block
shows some of the best results from the literature. For a better overview, we again show only
three classes and the average score for all ten PASCAL 2006 classes. The number of model
parameters and the time for training the model (relative to the simple log-linear model) are
given as well.

It can be seen that our baseline model, consisting of only 2 ·32 ·(1+40) = 2,624 parame-
ters per sub-task (we consider binary classifiers, 32 model components, 40 dimensional data)
already achieves competitive results and clearly outperforms the simple log-linear model
without mixtures, which only has 2 · (1 + 40) = 82 parameters. However by adding second
order features, the number of parameters grows quadratic in the dimension of the feature
space (2 · 32 · (1 + 40 + 40·41

2 ) = 55104, but the improvement in AUC is relatively low con-
sidering the increase of parameters by more than an order of magnitude. On the other hand,
by adding additional appearance descriptors, we have 2 ·32 · (1 +3 ·40) = 7744 parameters
and obtain better results with less parameters which suggests better generalisation capabili-
ties.

By adding spatial layout information, we have (2 · 32 · (1 + 40 +(2 · (1 + 40))) = 7872
parameters and the results are improved for strongly varying classes.

The bottom block of Table 3 shows results from the evaluation [5]. The GMD result from
[10] used a combination of 3 individual models, each with 1024 mixture components and
diagonal but unpooled covariances leading to 3 · 1024 · (1 + 40 + 40) = 248832 parameters
and obtains similar performance. The method “Bag of Features/Spatial Pyramid” is the best
result from the evaluation and is joint work by Queen Mary University, London and INRIA
Rhone-Alpes. They use a strongly tuned bag-of-visual words approach with a χ2-pyramid
matching kernel. The total number of parameters is unknown to us, but will likely be rather
large because the SVM will most probably consist of a huge amount of support vectors.
At the moment, our method cannot beat this method. However, by adding more advanced
features such as SIFT features and possibly some more advanced spatial models, there is still
room for improvement.
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4 Discussion and Conclusion
We proposed log-linear mixture models as an extension in order to allow for non-linear
decision boundaries in log-linear models and showed that the proposed model is the discrim-
inative counterpart of Gaussian mixture models.

The proposed model allows to create efficient and small (in the number of parameters)
models, which still outperform Gaussian approaches and compare favourably well to the
state of the art. One key advantage of the proposed model is that it is easy to fuse arbitrary
cues such as spatial information or different descriptors in a theoretically sound way with-
out making the model computationally expensive and without imposing any badly funded
assumptions.

In the future, we intend to evaluate different descriptors and to improve the modelling of
spatial relationships of the individual extracted features.
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