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Abstract

We propose a novel method for tracking objects in a video scene that undergo dras-
tic changes in their appearance. These changes may arise due to out-of-plane rotation,
abrupt or gradual changes in illumination in outdoor scenarios, or changing position with
respect to near light-sources indoors. The key problem with most existing models is that
they are either non-adaptive (rendering them non-robust to object appearance change)
or use a single tracker output to heuristically update the appearance model at each it-
eration (rendering them vulnerable to drift). In this paper, we take a step toward gen-
eral real-world tracking, in a principled manner, proposing a unified generative model
for Bayesian multi-feature, adaptive target tracking. We show the performance of our
method on a wide variety of video data, with a focus on surveillance scenarios.

1 Introduction
Tracking is regarded as one of the most fundamental tasks in computer vision. Despite
decades of research, the goal of fully automatic tracking of arbitrary types of objects in real
world conditions is still an open problem. There are various reasons for the challenging
nature of this problem: i) Tracking arbitrary objects requires dealing with various shapes,
sizes and movement dynamics. ii) Movement against cluttered backgrounds. iii) Occlusions
by fixed obstacles or other mobile objects. iv) Objects may change appearance drastically
by moving through changing lighting conditions, moving non-rigidly and with 3D rotation.

The flexibility of the particle filtering approach [1] in dealing with non-linear dynamics
and complex observation models has popularized generative models for tracking [12, 13].
Generative models also allow integration of multiple features to improve tracking accuracy
in a principled and straightforward way [4, 14, 16, 19]. Nevertheless, such models frequently
have the drawback of requiring hand initialization of contours [14], failing the requirement
for automatic application; or a fixed target model [13], crucially failing in the requirement of
robustness to appearance change required for real-world tracking. Some studies have tried
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to update appearances online in various heuristic ways [3, 12, 17, 23]. This, however, brings
about the risk of gradual drifting of the target model to focus on background or clutter. These
problems are in general due to the fact that we do not know if a bad match is due to target
appearance change in which case the model should be updated, or due to bad tracking in
which case the model should not be updated to avoid drift [12].

Recently, discriminative methods for tracking have gained popularity [2, 6, 18, 22].
These treat tracking as a classification problem, learning a decision boundary between the
target and the background with the aim of avoiding being distracted by clutter. These have
also been heuristically updated online to track appearance changes [6, 18, 22]. However there
are various general problems with discriminative models. They may preclude useful options
available to generative modelers, e.g., to build in machinery to cope with joint target track-
ing [11], switching dynamics or observation models (e.g., occlusion reasoning [9]), and to
make use of standard algorithms for fixed lag smoothing, or whole trajectory (Viterbi) infer-
ence [7]. Moreover, they often regress to tracking objects of fixed size and scale [6, 18, 22].

The key problem with most existing models is that they are either non-adaptive (non-
robust to object appearance change) or use a single tracker output to update the appear-
ance model at each time [10, 17]. This is known as self-training [24], susceptible to self-
reinforcing errors [24]. In the context of tracking, this corresponds to small errors in the
target model and inaccuracies in tracking reinforcing themselves until track lost. Some re-
cent studies have tried to get around this with co-training [24] of discriminative models. For
example [22] uses two independent trackers and if one tracker is sufficiently confident about
its prediction, that prediction is used to train the other and vice-versa. However, this entails
crucial tuning of confidence thresholds to decide when to use each feature.

2 A Unified Bayesian Adaptive Multiple Feature Tracker
In this paper, we take a step toward the goal of general real-world tracking, and demonstrate
a unified generative model for Bayesian multi-feature, adaptive target tracking, or AMFT for
short (Adaptive Multiple Feature Tracker). We derive a unified generative model for multi-
sensory adaptive tracking which cleanly integrates tracking and the modeling of appearance
change across multiple features in the same framework. The unified multi-feature observa-
tion model ensures that if one feature is not confident, e.g., color after an object crosses into
a region of shadow, it is automatically down-weighted in its contribution to the appearance
model update. In this way, without pre-training of specific object models, we achieve an
extensible tracker for general object types, robust to real-world problems of clutter, appear-
ance/lighting change and target model drift.

The standard modeling assumptions made by a non-adaptive generative model are illus-
trated by the probabilistic graphical model in Figure 1(a). The unknown target state (e.g.,
location, size, velocity) xt is assumed to change with time t according to some process pa-
rameterized by A. At every time t, we make some noisy observations zt of the target xt
(e.g., raw image or color histograms). The target is then tracked online by computing the
posterior, p(xt |z1:t) over the true target location recursively. In the case of the Kalman filter
(KF), all the distributions involved are Gaussian. In the case of the particle filter (PF), all
the distributions involved are represented non-parametrically by a set of samples [1]. The
true target model, e.g., the appearance or color histogram to search for, is assumed to be
part of the parameters H, i.e., it is known and fixed by an operator or initialized by some
external process. In many cases however, the true appearance of the target H may change
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Figure 1: Graphical models for the tracking problem. Figure 1(b) shows how the appearance
of a target can drastically change over a short period of time.

significantly in time, e.g., the appearance changes when a subject moves between shade and
sunlight. This is the case for outdoor surveillance applications and is the motivation for this
research. Figure 1(b) motivates how adaptation is crucial for tracking by illustrating from
ground truth data how the appearance of a target can drastically change over a period of 9 1

3
seconds in realistic outdoor conditions.

As discussed in Section 1, adaptive trackers [6, 12, 17, 23] have been proposed to update
the target appearance online in various heuristic ways. We can formalise this more general
modeling assumption generatively, by the generalized dynamic Bayesian network illustrated
in Figure 1(c). In contrast to Figure 1(a), the true target model which was previously included
in the fixed parameters H, is now included as the the initial condition y0 of a dynamic latent
variable yt , formalizing the modeling assumption that the target appearance can change over
time. In addition to the target state xt , the target appearance yt will therefore be incremen-
tally and recursively updated as part of the process of inferring the latent variables in this
model p(xt ,yt |z1:t). The latent space is of course now greatly expanded, and poses a more
challenging inference problem than that of Figure 1(a). In Section 2.1, we will detail the
specific parametric form of the model and an efficient inference algorithm.

2.1 Mathematical Framework
Our model is very generic and trivially extensible to any number of features, which assum-
ing they are not correlated or degenerate, will increase performance. For concreteness, we
will describe the model in terms of target color yc

t and orientation yo
t histograms and their

observations zc
t and zo

t as well as target state xt . The joint probability is:

p(zo
1:t ,z

c
1:t ,x1:t ,yo

1:t ,y
c
1:t |θ) = ∏

t
p(zo

t |yo
t ,xt ,θ)p(zc

t |yc
t ,xt ,θ)p(yo

t |yo
t−1,θ)p(yc

t |yc
t−1,θ)p(xt |xt−1,θ), (1)

p(xt |xt−1) = N (xt |Axxt−1,Qx), (2)

p(yc
t |yc

t−1) = N (yc
t |Acyc

t−1 +Bcyc
0,Q

c), (3)

p(yo
t |yo

t−1) = N (yo
t |Aoyo

t−1 +Boyo
0,Q

o), (4)

p(zc
t |yc

t ,xt) = N (zc
xt ,t |y

c
t ,R

c), (5)

p(zo
t |yo

t ,xt) = N (zo
xt ,t |y

o
t ,R

o). (6)

where R and Q are covariance parameters [20], A and B control how strongly the initial
appearance is weighted (discussed further below) and θ = {Qx,c,o,Ax,c,o,Rc,o,Bc,o,yc,o

0 } in-
cludes all the model parameters (for brevity we shall subsequently assume conditioning on
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all relevant parameters θ ). Multi-feature appearance adaptive tracking is carried out by re-
cursively inferring the posterior p(x1:t ,yc

1:t ,y
o
1:t , |zc

1:t ,z
o
1:t). The exact Bayesian filter for this

distribution is given by

p(yc
t ,y

o
t ,xt |zc

1:t ,z
o
1:t ) = p(zc

t |xt ,yc
t )p(zo

t |xt ,yo
t )

∫
xt−1 ,yc

t−1 ,yo
t−1

p(xt ,yc
t ,yo

t |xt−1,yc
t−1,yo

t−1)p(xt−1,yc
t−1,yo

t−1|zc
1:t−1zo

1:t−1)
p(zc

t ,zo
t |zc

1:t−1,zo
1:t−1)

. (7)

This is not, however, analytically tractable and in practice, the target model, e.g., ap-
pearance, color or orientation histograms, is in a high dimensional space. It is therefore
prohibitive to infer the entire model with any standard particle filtering approach. However,
by assuming the appearance distribution is Gaussian, we can derive a collapsed, or Rao-
Blackwellised [5], inference algorithm which exploits the conditional Gaussianity of y given
x for an efficient hybrid of approximate and exact inference. Specifically, given the follow-
ing general factorization p(yc

1:t ,y
o
1:t ,x1:t |zc

1:t ,z
o
1:t) = p(yc

1:t ,y
o
1:t |x1:t ,zc

1:t ,z
o
1:t)p(x1:t |zc

1:t ,z
o
1:t)

of the complete posterior and exploiting the conditional independences encoded in the model,
we have

p(yc
1:t ,y

o
1:t ,x1:t |zc

1:t ,z
o
1:t) = p(yo

1:t |x1:t ,zo
1:t)p(yc

1:t |x1:t ,zc
1:t)p(x1:t |zc

1:t ,z
o
1:t). (8)

Conditioned on target state x, the distributions involving target appearance y are all Gaus-
sian. We can therefore solve this inference problem by recursively sampling x, integrating y
exactly, and propagating the exact distributions over y given these samples.

Stability & Adaptability: One explicit or implicit assumption made by adaptive track-
ers is whether to exploit any memory of the initial appearance of the target beyond that of the
initial condition for the learned model. Purely using the initial appearance to define an initial
condition for online learning (e.g., [10, 12, 23]) usually means that the tracker can potentially
adapt to any possible appearance, but may make it more prone to instability and drift as it
can potentially lock on to a wider range of distracting clutter. Other schemes which retain
the initial appearance, such as the semi-supervised learning [6, 18] may improve stability by
preferring adaptation within a region around the initial appearance of the target, at the cost
of potentially being unable to track targets which change appearance dramatically. Which of
these approaches is preferable depends on the kind of data, i.e., how dramatically appearance
is expected to change. Our model explicitly recognizes the continuum between non-adaptive
fixed appearance tracking and fully adaptive tracking in which the initial appearance is only
an initial condition–both of which are special cases. The parameters A and B are manually
set and control how strongly the initial appearance is weighted (Equations 3 and 4), with
A = 1 and B = 0 giving fixed and fully adaptive template tracking respectively. If A and B
are non-zero and sum to 1, this reflects the generative modeling assumption (which can be
seen from sampling from this model) that we expect the appearance to vary, but around a
mean value of the initial y0.

2.2 Inference Procedure
Prior Probability: Assume the approximate filtered distributions from the previous time
steps are available as properly weighted sets of P target state samples, and sample conditional
Gaussian {w1:t−1,x1:t−1, p(yc

1:t−1|zc
1:t−1,x1:t−1), p(yo

1:t−1|zo
1:t−1,x1:t−1)}P

i=1 appearance dis-
tributions. That is,

p(yc
1:t−1,y

o
1:t−1,x1:t−1|zc

1:t−1,z
o
1:t−1)≈

P

∑
i

wi
1:t−1δ (xi

1:t−1)N (yc
1:t−1|µ

c,i
1:t−1,P

i,c
1:t−1)N (yo

1:t−1|µ
i,o
1:t−1,P

i,o
1:t−1), (9)

where the conditional Gaussian appearance distributions are parameterized by mean and
variance sufficient statistics µ

i,c
t and Pi,c

t .
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Prediction: The predictive distribution p(xt ,yc
t ,yo

t |x1:t−1,yc
1:t−1,y

o
1:t−1,z

c
1:t−1,z

o
1:t−1) is given

by sampling xi
t from its forward model xt ∼ p(xt |xt−1). Then, for each sample i, the Gaus-

sian sufficient statistics for each feature, is effectively Kalman prediction, e.g., for color:

p(yc
t |zc

1:t−1,x
i
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c ), (10)

where superscript − indicates pre-observation statistics, µ
c,−
t = Acµc

t−1 + Bcyc
0 and Pc,−

t =
Qc +AcPc

t−1AcT .
Posterior Update: The posterior sufficient statistics for the xi

t conditional appearance
model of each particle i, and the sample weighting wi

t are updated to reflect the new ob-
servations zc

t and zo
t . The appearance update for each feature is given by, e.g., for c:

p(yc
t |zc

1:t ,x
i
1:t) ∝ p(zc

t |yc
t ,x

i
t)p(yc

t |zc
1:t−1,x

i
1:t−1) = N (yc

t |µc
t ,Pc

t ), (11)

where sufficient statistics µc
t = µ

c,−
t +Kc

t (zc
t −µ

c,−
t ), Pc

t =(I−Kc
t )P

c,−
t and Kc

t = Pc,−
t (Pc,−

t +
Rc)−1 are as in the standard Kalman update equations [20].

Given that we used the forward model p(xt |xt−1) as the proposal for xt , the posterior
importance sampling weights are given by the marginal likelihood of the new data. Given the
model structure (Figure 1(c)), we can exploit the factorization p(zc

t ,zo
t |xi

1:t ,z
c
1:t−1,z

o
1:t−1) =

p(zc
t |xi

1:t ,z
c
1:t−1)p(zo

t |xi
1:t ,z

o
1:t−1) as follows:

wi
t ∝ wi

t−1 p(zc
t ,z
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t |xi

1:t ,z
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1:t−1,z

o
1:t−1), (12)

p(zc
t ,z

o
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c
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o
1:t−1) =

∫
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t ,y
c
t |xi
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t

∫
p(zo

t ,y
o
t |xi
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p(zc
t ,z

o
t |xt ,z1:t−1) = N (zc

t |µc
t−1,P

c
t−1 +Rc)N (zo

t |µo
t−1,P

o
t−1 +Ro). (14)

The posterior distribution p(yc
1:t ,y

o
1:t ,x1:t |zc

1:t ,z
o
1:t ,θ) is represented by the updated set of

weighted samples, {w1:t ,x1:t , p(yc
1:t |zc

1:t ,x1:t), p(yo
1:t |zo

1:t ,x1:t)}P
i=1 through the appending of

the updates from Equations (11, 12).
To summarize intuitively, this inference algorithm for Figure 1(c) jointly models target

state and appearance by attaching a hypothesized distribution over the target appearance
and position to each particle (Equation 9). The position likelihoods are determined by the
match between the hypothesized appearance and the pixels at the associated image location
(Equation 12), and the target appearance models are then updated according to the pixels at
the hypothesized image location (Equation 11). If only a filtered estimate of the target state
and appearance is required, the historical samples may be discarded.

2.3 Implementation
We use standard features suitable for representation of generic targets, specifically, nor-
malised color histograms and normalized histograms of gradients (HoG). The target spa-
tial state is represented by x = [x,y,w,h,vx,vy], i.e., spatial (x,y), size (w,h) and velocity
(vx,vy) parameters represented as particles, and the target appearance models (yc and yo) and
observations thereof (zc and zo) are represented by the bin values of color and orientation
histograms, modeled as Gaussians. The color histograms are defined on R, G and B chan-
nels with 256 bins, and the orientation histogram uses 181 bins. Covariance parameters Rc,o

and Qc,o,x are assumed to be diagonal. These details can be generalized in a straightforward
manner in various ways, e.g., more features or using a more complicated mixture proposal to
spawn particles at locations detected by a foreground/background model. For convenience
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we provide a summary of the algorithm below

Algorithm Summary:

Assume the full posterior over target appearance and state at time t represented approxi-
mately as {wt−1,xt−1, p(yc

t−1|z
c
1:t−1,x1:t−1), p(yo

t−1|z
o
1:t−1,x1:t−1)}P

i=1, then

• For particles i = 1 . . .P, do:

1. Sample state particles xi
t ∼N (xt |xi

t−1,Q
x).

2. Compute exact appearance predictions p(yc
t |zc

1:t ,x
i
t) (10).

3. Compute new weights wi
t as the marginal likelihood of the observations given

xi
t (12,14).

4. Update appearance posterior p(yc
t |zc

1:t ,x
i
1:t ,θ) (11).

• Resample particles in proportion to their weights wi
t .

• Point estimate state x̂ and appearances ŷc, ŷo as mean of particle distribution.

3 Experiments

We evaluate our method (AMFT) against three contemporary approaches: A standard single
feature particle filter (PF), mean-shift (MS) [21] and incremental visual tracking (IVT) [17].
The PF and MS trackers are non-adaptive color-based trackers, while IVT aims for pose and
illumination change robustness by performing online adaptation in a subspace appearance
model. Note that the AMFT, PF and IVT trackers track object scale, but MS does not.

We evaluated these methods on a series of challenging video clips exhibiting a wide va-
riety of data and object types for tracking, including far-field indoor and outdoor pedestrians
with and without carried objects, vehicle tracking, and near-field indoor face tracking. Ex-
tensive appearance variations were due to out-of-plane rotation, shadows and lighting. These
occurred over short time intervals, the clips ranged from approximately two seconds to 14.6
seconds.
PETS2006 Pedestrian [15]: Figure 2(a-d) illustrate a relatively easy indoor pedestrian
tracking sequence from the PETS 2006 database. In this sequence, all the trackers perform
fairly well except MS (blue). This is because MS depends heavily on the color content of
the target and spatial overlap between frames, which are both fairly weak in this case. There
is relatively little appearance change, so the standard PF performs as well as the adaptive
trackers.
Cyclist: The outdoor cyclist tracking sequence illustrated in the Introduction is evaluated
in Figure 2(e-h). Here the brightness saturation in the middle of the sequence, out-of-plane
rotation of the person with a backpack and bicycle, and movement of the target into a clut-
tered region of other bicycles make this sequence challenging. Our AMFT model (green)
successfully tracks the cyclist to the end of the sequence. In contrast, by Figure 2(g-h) the
standard PF (magenta) and MS (blue) trackers get lost in the clutter and the IVT tracker (red)
fails to follow the cyclist into the bike rack at all.
Face: A completely different type of in-door near-field face tracking problem is evaluated
in Figure 2(i-l). Out-of-plane rotation of the face and walking under celling lighting result in
challenging appearance and color-variations. Moreover, the moving camera results in a non-
stationary background. These challenges cause MS (blue) and the standard PF (magenta) to
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fail. The facial structure is relatively consistent for most of the sequence so IVT does fairly
well until Figure 2(l), where in-plane rotation causes it to drift slightly. The AMFT model
successfully adapts to the variations performing fairly well throughout.
iLIDS cars [8]: Figure 2(m-p) illustrates a car-tracking problem from the iLIDS vehicle
database. The strong sunlight casts a shadow across the road causing a challenge for color-
based trackers. By Figure 2(o), the color change and fast movement has caused MS to loose
the target. As the car moves closer to the corner, its pixel-wise velocity increases as it gets
closer to the camera, and its appearance change increases as it turns, rotating out-of-plane.
As a result the standard PF and IVT trackers are loosing the target by Figure 2(p), while
AMFT continues to track well.
iLIDS underground 1: Figure 2(q-t) illustrates a pedestrian-tracking problem from the
iLIDS underground database. In this case there is very strong scale and appearance change
as the target turns and walks towards the camera. These changes turn out to be too strong
for MS, the standard PF and IVT to cope with, while the AMFT copes better. This sequence
demonstrates the importance of the key contributions of this paper, i.e., adaptation and multi-
feature fusion, as can be seen in Figure 3. Specifically, Using standard non-adaptive trackers
(magenta) is insufficient. Adaptively, using either color alone (red dashed window) or ori-
entation alone (red dotted window) the model does not track the target accurately, and it
eventually looses focus and learns to track a distracting nearby person. Using both features
combined (solid green window, as in Figure 2(q-t)), the target tracking is more accurate, the
model maintains focus on the target and adapts to the scale and appearance changes.
iLIDS underground 2: Figure 2(u-x) illustrates another pedestrian-tracking problem with
more clutter and partial occlusion. In this case the brightly colored man is fairly easy to
follow, except that an adaptive tracker has the risk of learning and locking onto other nearby
people while he is partially occluded (see Figure 4 and Section 2.1 Stability & Adaptability).
The standard non-adaptive PF tracker drifts, as does MS, the adaptive IVT tracker learns the
occluder and fails and the AMFT tracker tracks fairly smoothly the whole time as it adapts
somewhat to represent the partially occluded target, but with enough memory to regain it
easily at the end.

Finally, Table 1 summarises Root Mean Square Error (RMSE) results between the tracks
in each sequence and the corresponding manual ground truth trajectories for all sequences,
quantitatively demonstrating the performance of our method compared to the others. We
note that for the face sequence, IVT had a lower RMSE, however this tracker was designed
specifically for face type data and still failed to estimate rotation correctly.

4 Conclusions
We have presented a novel, principled method for adaptively tracking targets based on multi-
ple features. By fusing multiple features, the overall posterior over target location p(x|z1:t) is
sharper and more accurate even when one individual feature is uninformative due to low con-
trast or clutter (Figure 3). In addition to improving tracking accuracy, this counteracts some
risks of vanilla self-training [24] often used by adaptive trackers [10, 17] in which the output
of a single tracker is used to train its model of the target, potentially allowing some frames
with inaccurate or low-confidence estimates to induce errors in the target model which are
progressively accumulated until target loss (Figure 2(q-t)). The second way in which we
address the stability-adaptability issue compared to [10, 17] is to represent the modeling as-
sumption that targets may change appearance arbitrarily, but do so around a mean value of
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(a) (b) (c) (d)
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Figure 2: Adaptive multi-feature tracking results with comparisons to other methods. AMFT
(green), standard PF (magenta), IVT [17] (red) MS [21] (blue).
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(a) (b) (c) (d)

Figure 3: Importance of fusion for adaptive tracking. Adaptive color only (dashed red),
orientation only (dotted red), and fused tracking (solid green; same as Figure 2(q-t))

(a) (b) (c) (d)

Figure 4: Comparison of AMFT with full adaptation (solid red) versus AMFT with adapta-
tion and memory (solid green; same as Figure 2(u-x)).

their initial condition. This improves the robustness of our adaptive tracker, especially when
dealing with robustness to partial occlusion (Figure 2(u-x)).

We demonstrated the effectiveness of our method by evaluating it on real-world data
on targets undergoing strong appearance change (lighting and out-of-plane rotation) where
other adaptive and non-adaptive trackers failed. Moreover, the flexibility of our approach is
illustrated by its successful application to a wide variety of object types (pedestrians, cyclists,
cars, faces) and scenarios (indoor, and outdoor, near and far field). This is in contrast to
typical application customized trackers, e.g., indoor near-field faces [17] indoor medium-
field pedestrians [7].

There are some limitations of our approach which are our topics of future research. Our
tracker is only single-target aware: we can track multiple targets independently, but without
joint target tracking [7, 11] there is potential for nearby targets to be confused. Another
consideration with the model as presented is that we learn a single probabilistic model of the
target appearance given variations seen up to the current time. We can track targets that are
ultimately completely different in appearance from the initial frame (unlike e.g., [6] which
require some similarity to the initial frame), but in the event of track loss, reacquisition is
unlikely. A straightforward solution we have used is to include a hierarchical switching
dynamic model which can optionally recreate particles with the initial condition mean. An-
other key topic we are investigating is automatic learning of model parameters from data.
Like most other contemporary models in the literature [10, 17] there are a few parameters
in our model (observation and process covariances in this case) which may need to be set
per-application scenario, but should ideally be learned automatically. One advantage of our
generative framework is that, as a first step, standard dynamic linear Gaussian learning al-
gorithms can be used for calibrating these from a sample ground truth trajectory in each
application scenario. Finally, the scene background should also be modeled [11] to help
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Cyclist PETS 2006 Face iLIDS cars iLIDS underground 1 iLIDS underground 2
AMFT 78.04 29.94 51.78 48.89 105.68 88.92
PF 106.29 53.24 201.60 53.58 123.17 97.53
IVT 100.49 69.86 24.98 70.91 140.43 92.63
MS 425.12 86.95 178.78 186.88 209.02 189.82

Table 1: RMSE results between the tracks in each sequence and the corresponding manual
ground truth trajectories for all sequences.

distinguish the target from the surroundings to ensure even more robust adaptation.
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