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Abstract

This paper presents a technique to robustly compare two distributions represented by
samples, without explicitly estimating the density. The method is based on mapping the
distributions into a reproducing kernel Hilbert space, where eigenvalue decomposition is
performed. Retention of only the top M eigenvectors minimizes the effect of noise on
density comparison. A sample application of the technique is visual tracking, where an
object is tracked by minimizing the distance between a model distribution and candidate
distributions.

1 Introduction

Many problems in computer vision require measuring the distance between two distributions.
For example, in visual tracking, the object to be tracked is presumed to be characterized
by a probability distribution [2, 7, 14]. To track the object, each image of the sequence is
searched to find the region whose sample distribution closely matches the model distribution.
One popular algorithm, the mean shift [2], calculates the distance between the distributions
using Bhattacharya coefficient. Elgammal [3] employs a joint appearance-spatial density
estimate and measures the similarity of the model with the candidate distribution using the
Kullback-Leibler information distance.

Similarly in some contour based segmentation algorithms [4, 10], the contour is evolved
either to separate the distribution of the pixels inside and outside of the contour [10], or to
evolve the contour so that the distribution of the pixels inside matches a prior distribution of
the target object [4]. In both cases, the distance between the distributions is calculated using
Bhattacharya coefficient or Kullback-Leibler information distance.

The algorithms defined above require computing the probability density functions us-
ing the samples, which becomes computationally expensive for higher dimensions. Another
problem associated with computing probability density functions is the sparseness of the
observations within the d-dimensional feature space, especially when the sample set size is
small. This makes the similarity measures, such as Kullback-Leibler divergence and Bhat-
tacharya coefficient, computationally unstable [13]. Additionally, these techniques require
sophisticated space partitioning and/or bias correction strategies [12].
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Contribution: In this work we propose a novel method to compute the distance between
two distributions that is robust to noise and outliers. The method works directly on the sam-
ples without requiring the intermediate step of density estimation. It is based on maximum
mean discrepancy (MMD) [12], which measures the distance between two distributions in
the reproducing kernel Hilbert space (RKHS). MMD has been used to address the two sam-
ple problem [6]. The technique described is used to compare distributions within the context
of visual tracking.

The remainder of the paper is organized as follows. Section 2 briefly explains the MMD
measure, which is followed by a description of the proposed method, the Robust MMD
(rMMD), in Section 3. Section 4 derives an object tracking algorithm based on Robust
MMD. Tracking results are presented in Section 5.

2 Maximum Mean Discrepancy

Let {ui}n
i=1, with ui ∈ Rd , be a set of n observations drawn from the distribution Pu. Define

a mapping φ : ui→ kkk(ui, ·) such that kkk(ui,u j) =
〈
φ(ui),φ(u j)

〉
, where kkk is a kernel function,

such as the Gaussian kernel,

kkk(ui,u j) = exp(

∣∣∣∣ui−u j
∣∣∣∣2

2σ2 ). (1)

The mean of the mapping is defined as µ : Pu→ µ[Pu], where µ[Pu] = E[φ(ui)]. If the finite
sample of points {ui}n

i=1 are drawn from the distribution Pu, then the unbiased numerical
estimate of the mean mapping µ[Pu] is 1

n ∑
n
i=1 kkk(ui, ·). Smola et al. [12] showed that the mean

mapping and the probability at a test point u ∈ Rd are related by the following equation:

p(u) = 〈µ[Pu],φ(u)〉 ≈ 1
n

n

∑
i=1

kkk(u,ui). (2)

Equation (2) results in the familiar Parzen window density estimator. In terms of Hilbert
space embedding, the density function estimate results from the inner product of the mapped
point φ(u) with the mean of the distribution µ[Pu]. The mean map µ : Pu→ µ[Pu] is injective
[12], and allows for the definition of a distance between the distributions Pu and Pv. The
distance is defined to be D(Pu,Pv) := ||µ[Pu]−µ[Pv]||. This distance is called the maximum
mean discrepancy (MMD).

3 Robust Maximum Mean Discrepancy

Instead of using Parzen window density estimator, we use an alternate probability density
estimation technique proposed by Girolami [5], where kernel principal component analysis
(KPCA) [11] is used to provide the discrete expansion coefficients required for a non para-
metric orthogonal series density estimator. Density estimation in the Hilbert space using
KPCA improves the robustness to noise and outliers when compared to Parzen window den-
sity estimation. Retention of only the top eigenvectors minimizes the effects of noise on the
density estimation as shown in Figure 1. The robust MMD procedure is described below.
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(a) Parzen window density estimation. (b) KPCA based density estimation [5].

Figure 1: Non-parametric density estimation of multi-modal, noisy Gaussian distribution.

The probability density at a point u is estimated by the construction of a finite series of
orthogonal functions [5],

p(u) =
M

∑
k=1

ω
k
Ψ

k(u) . (3)

where {Ψk}M
k=1 are M orthonormal functions with coefficients ωk. KPCA provides a means

to generate the orthonormal functions associated with the estimate of the probability density
function (Equation 3). Given a set of samples {ui}n

i=1, drawn from the distribution Pu, the
kernel matrix K is formed with entries Ki j = kkk(ui,u j). Let eeek = [ek

1, . . . ,e
k
n] and λ k be the kth

eigenvector and eigenvalue of the kernel matrix, then the value of function Ψk(u) is generated
by projecting φ(u) onto the kth normalized eigenvector Vk

Ψ
k(u) = 〈Vk,φ(u)〉=

n

∑
i=1

wk
i kkk(u,ui), (4)

where wk
i = ek

i√
λ k . The coefficients in Equation (3) are given by

ω
k = E{Ψk(u)}=

1
n

n

∑
i=1

Ψ
k(ui). (5)

Continuing further, the probability density estimate at a test point u has the form,

p(u) =
M

∑
k=1

ω
k
Ψ

k(u) =
M

∑
k=1

ω
k
〈

V k,φ(u)
〉
≡ 〈µr[Pu],φ(u)〉 , (6)

where the final equality defines the proposed robust mean map µr : Pu→ µr[Pu], with µr[Pu] :=
∑

M
k=1 ωkV k. The density is estimated by the inner product of the robust mean map µr[Pu] and

the mapped point φ(u). The mean map µr[Pv] for the samples {vi, ...,vm} is calculated by re-
peating the same procedure as for Pu. Generating the orthogonal functions in this manner for
each sample set is expensive as it requires the eigenvalue decompositions of the associated
kernel matrices. The proposed solution is to use the same eigenvectors V k of the distribution
Pu. The distance between the samples is then given by

Dr(Pu,Pv) = ||ωωωuuu−ωωωvvv|| , (7)

Citation
Citation
{Girolami} 2002

Citation
Citation
{Girolami} 2002



4 ARIF, VELA: DENSITY COMPARISON FOR TRACKING

−2 0 2 4 6 8

−6

−4

−2

0

2

4

6

(a) Distribution 1 samples.

−2 0 2 4 6 8

−6

−4

−2

0

2

4

6

(b) Distribution 2 samples ob-
tained by adding noise to distribu-
tion 1.

0.5 1 1.5 2 2.5

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Noise level

D
is

ta
nc

e

 

 
MMD
rMMD

(c) distance vs. noise level.

Figure 2: MMD vs robust MMD.

where ωωωuuu = [ω1
u , . . . ,ωM

u ]T and ωωωvvv = [ω1
v , . . . ,ωM

v ]T . Since both mean maps live in the same
eigenspace, we have dropped the eigenvectors V k from Equation (7).

The procedure is summarized below.

• Obtain samples {ui}n
i=1 and {vi}m

i=1 from two distributions Pu and Pv.

• Form kernel matrix K using the samples from the distribution Pu. Diagonalize the
kernel matrix to get eigenvectors eeek = [ek

1, . . . ,e
k
n] and eigenvalues λ k for k = 1, ...,M,

where M is the total number of eigenvectors retained.

• Calculate ωωωuuu using Equation (5), and ωωωvvv by ωk
v = 1

m ∑
m
i=1 Ψk(vi).

• The distance between the distributions is given by Equation (7)

As a simple example, we compute MMD and robust MMD between two distributions.
The first is a multi-modal Gaussian distribution. The second is obtained from the first by
adding Gaussian noise to about 50% of the samples. Ideally the distance measurement should
be zero. Figure 2(c) shows the MMD and robust MMD measure as the standard deviation of
the noise is increased. The slope of robust MMD is much lower than MMD showing that it
is less sensitive to noise. Figure 3, illustrates the effect of noise on density estimation errors
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(a) Density estimate error for MMD
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(b) Density estimate for rMMD

Figure 3: Illustration of the effect of noise on density estimation errors for MMD vs. rMMD.
Samples from the ideal dist. are red and from the corrupted dist. are blue.
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for MMD vs. rMMD. Samples from the ideal distribution are red and from the corrupted
distribution are blue. The effect of noise is more pronounced in case of MMD.

4 Visual Tracking
An application of the technique developed in the previous section is visual tracking, where
an object is tracked by minimizing the distance between a model distribution and given
candidate distributions. A key requirement here is that the distance measure should be robust
to noise and outliers, which arise for a number of reasons such as noise in imaging procedure,
background clutter, partial occlusions, etc. This section provides a gradient based object
localization procedure using rMMD.

4.1 Image Pixel Arrangement
The image I is represented as a two-dimensional lattice of a one dimensional intensity im-
age, a three dimensional color image, or some vector valued image. Let F(x) be the p-
dimensional appearance vector extracted from I at the spatial location x,

F(x) = Γ(I,x), (8)

where Γ can be any mapping such as color, image gradient, edge, texture etc. The lattice
domain is called the spatial domain, while the p-dimensional appearance information is
called the appearance domain. A pixel vector is constructed by concatenating the appear-
ance and the spatial values in a joint appearance-spatial domain of dimension d = p + 2.
Let u = [F(x),x]T be such a d-dimensional pixel vector, representing a pixel at location x
in the joint appearance-spatial domain. The set of all pixel vectors, {ui}n

i=1, extracted from
the template region R are observations from an underlying density function Pu. To locate
the object in an image, a region R̃ (with samples {vi}m

i=1) is sought whose density Pv has the
minimum distance to the model density Pu as given by Equation (7). The kernel in this case
is

kkk(ui,u j) = exp
(
−1

2
(ui−u j)T

Σ
−1(ui−u j)

)
, (9)

where Σ is a d×d diagonal matrix with bandwidths for each appearance-spatial coordinate,
{σF1 , . . . ,σFp ,σs1 ,σs2}. An exhaustive search can be performed to find the region having
minimum distance or, starting from an initial guess, gradient based methods can be used
to find the local minimum. For the latter approach, we provide a variational localization
procedure below.

4.2 Target Localization
Assume that the target object undergoes a geometric transformation from region R to a region
R̃, such that R = T (R̃,a), where a = [a1, . . . ,ag] is a vector containing the parameters of trans-
formation and g is the total number of transformation parameters. Let {ui}n

i=1 and {vi}m
i=1 be

the samples extracted from region R and R̃, and let vi = [F(x̃i),T (x̃i,a)]T = [F(x̃i),xi]T . The
rMMD measure between the distributions of the regions R and R̃ is given by the Equation
(7), with the L2 norm is

Dr =
M

∑
k=1

(
ω

k
u −ω

k
v

)2
, (10)
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where the M-dimensional robust mean maps for the two regions are ωk
u = 1

n ∑
n
i=1 Ψk(ui) and

ωk
v = 1

m ∑
m
i=1 Ψk(vi). Gradient descent can be used to minimize the distance with respect to

the transformation parameter a. The gradient of Equation (10) with respect to the transfor-
mation parameters a is

∇aDr =−2
M

∑
k=1

(
ω

k
u −ω

k
v

)
∇aω

k
v , (11)

where ∇aωk
v = 1

m ∑
m
i=1 ∇aΨk(vi). The gradient of Ψk(vi) with respect to a is,

∇aΨ
k(vi) = ∇xΨ

k(vi) ·∇aT (x̃,a), (12)

where ∇aT (x̃,a) is a g×2 Jacobian matrix of T and is given by ∇aT = [ ∂T
∂a1

, . . . , ∂T
∂ag

]T . The

gradient ∇xΨk(vi) is computed as,

∇xΨ
k(vi) =

1
σ2

s

n

∑
j=1

wk
jkkk(u j,vi)(πs(u j)− xi), (13)

where πs is a projection from d-dimensional pixel vector to its spatial coordinates, such that
πs(u) = x and σs is the spatial bandwidth parameter used in kernel kkk. The transformation
parameters are updated using the following equation,

a(t +1) = a(t)−δ t∇aDr, (14)

where δ t is the time step.

5 Results
This section reports tracking results obtained using Section 4. The pixel vectors are con-
structed using the color values and the spatial values. The value of σ used in the Gaussian
kernel (Equation (9)) is σF = 60 for the color values and σs = 4 for the spatial domain. The
number of eigenvectors, M, retained for the density estimation (Equation (3)) were chosen
following [5]. In particular, given that the error associated with the eigenvector k is

ε
k = (ωk)2 =

{
1
n

n

∑
i=1

Ψ
k(ui)

}2

, (15)

the eigenvectors satisfying the following inequality were retained,{
1
n

n

∑
i=1

Ψ
k(ui)

}2

>
1

1+n

{
1
n

n

∑
i=1

(Ψk(ui))2

}
. (16)

In practice, about 25 of the top eigenvectors were kept, i.e, M = 25. The tracker was im-
plemented using Matlab on an Intel Core2 1.86 GHz processor with 2GB RAM. The run
time for the proposed tracker was about 0.5-1 frames/sec, depending upon the object size.
The computational complexity of the tracker can be reduced considerably by computing the
projections (Equation 4) efficiently as described in [1].

In all the experiments, we consider translation motion and the initial size and location of
the target objects are chosen manually. Figure 4 shows results of tracking two people under
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1

Frame

(a) Original

Frame 1

(b) Noise σ = .1

Frame 1

(c) Noise σ = .2

Frame 1

(d) Noise σ = .3

120 240

Frame

Figure 4: Construction Sequence. Trajectories of the track points are shown. Red: No noise
added, Green: σ = .1, Blue: σ = .2, Black: σ = .3. The tracker tracked in all the cases.

different levels of Gaussian noise. Matlab command imnoise was used to add zero mean
Gaussian noise of σ = [.1, .2, .3]. The sample frames are shown in Figure 4(b), 4(c) and 4(e).
The trajectories of the track points are also shown. The tracker was able to track in all cases.
Mean shift tracker [2] lost track within few frames in case of noise level σ = .1.

Figure 5 shows the result of tracking the face of a pool player. The method was able
to track 100% at different noise levels. The covariance tracker [9] could detect the face
correctly for 47.7% of the frames, for the case of no model update (no noise case). The mean
shift tracker [2] lost track at noise level σ = .1.

Figure 6 shows tracking results of a fish sequence. The sequence contains noise, back-
ground clutter and fish size changes. The jogging sequence (Figure 7) was tracked in con-
junction with Kalman filtering [8] to successfully track through short-term total occlusions.

Table 1: Tracking sequence
Sequence Resolution Object size Total Frames

Construction 1 320×240 15×15 240
Construction 2 320×240 10×15 240

Pool player 352×240 40×40 90
Fish 320×240 30×30 309

Jogging (1st row) 352×288 25×60 303
Jogging (2nd row) 352×288 30×70 111
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(a) Sample Frame. (b) No Noise

(c) Noise σ = .1. Noise is shown in only two
columns for better visualization.

(d) Noise σ = .2. Noise is shown in only two
columns for better visualization.

Figure 5: Face sequence. Montages of extracted results from 90 consecutive frames for
different noise levels.

6 Conclusion

We presented a novel density comparison method, which is robust to noise and outliers, given
two sets of points sampled from two distributions. The method does not require explicit
density estimation as an intermediate step. Possible applications of the proposed density
comparison method in computer vision are visual tracking, segmentation, image registration,
and stereo registration. We used the technique for visual tracking and provided a variational
localization procedure.
Acknowledgement: The research was supported in part by NSF ECCS #0622006.
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