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Many problems in computer vision require measuring the distance be-
tween two distributions. For example, in visual tracking, the object to be
tracked is presumed to be characterized by a probability distribution. To
track the object, each image of the sequence is searched to find the region
whose sample distribution closely matches the model distribution. This
paper presents a technique to robustly compare two distributions repre-
sented by samples, without explicitly estimating the density. The method
is based on mapping the distributions into a reproducing kernel Hilbert
space, where eigenvalue decomposition is performed. Retention of only
the top M eigenvectors minimizes the effect of noise on density compar-
ison. A sample application of the technique is visual tracking, where an
object is tracked by minimizing the distance between a model distribution
and candidate distributions.

Density Comparison: Let {ui}n
i=1, with ui ∈ Rd , be a set of n ob-

servations. A probability density at a point u can be estimated by the
construction of a finite series of orthogonal functions [1],

p(u) =
M

∑
k=1

ω
k
Ψ

k(u) . (1)

where {Ψk}M
k=1 are M orthonormal functions with coefficients given by

ωk. The orthonormal functions and the coefficients can be computed us-
ing kernel principal component analysis (KPCA) [2] and are given by

Ψk(u) = 〈Vk,φ(u)〉= ∑
n
i=1 wk

i kkk(u,ui),
ωk = 1

n ∑
n
i=1 Ψk(ui).

(2)

Using Equations (2) in Equation (1), the probability density estimate at a
test point u has the form,

p(u) =
M

∑
k=1

ω
k
Ψ

k(u) =
M

∑
k=1

ω
k
〈

V k,φ(u)
〉
≡ 〈µr[Pu],φ(u)〉 , (3)

where the final equality defines the proposed robust mean map µr : Pu→
µr[Pu] , with µr[Pu] := ∑

M
k=1 ωkV k. The robust distance measure between

the two distributions Pu and Pv is defined using the robust mean map µr,
and we call it the robust Maximum Mean Discrepancy (rMMD) (MMD
measure has been defined in [3], where KPCA is not carried out in the
kernel space),

Dr(Pu,Pv) := ||µr[Pu]−µr[Pv]|| , (4)

= ||ωωωuuu−ωωωvvv|| , (5)

where ωωωuuu = [ω1
u , . . . ,ωM

u ]T and ωωωvvv = [ω1
v , . . . ,ωM

v ]T . Since both mean
maps live in the same eigenspace, the eigenvectors V k have been dropped
in Equation (5).

Visual Tracking: To apply the robust density comparison method to
visual tracking, assume that the target object undergoes a geometric trans-
formation T from a region R to a region R̃, such that R = T (R̃,a), where
a = [a1, . . . ,ag] is a vector containing the parameters of transformation
and g is the total number of transformation parameters. The objective is
to estimate the transformation parameters a. Let {ui}n

i=1 and {vi}m
i=1 be

the pixel vectors extracted from region R and R̃. Let the pixel vectors
extracted from the region R are given by ui = [I(x),x], where I(x) be the
p-dimensional appearance vector extracted from image I at the spatial lo-
cation x, and let vi = [I(x̃i),T (x̃i,a)]T = [I(x̃i),xi]T . The rMMD measure
between the distributions of the regions R and R̃ is given by the Equation
(4), and with the L2 norm is

Dr =
M

∑
k=1

(
ω

k
u −ω

k
v

)2
, (6)

where the M-dimensional robust mean maps for the two regions are ωk
u =

1
n ∑

n
i=1 Ψk(ui) and ωk

v = 1
m ∑

m
i=1 Ψk(vi). Gradient descent can be used to
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Figure 1: Construction Sequence. Trajectories of the track points are
shown. Red: No noise added, Green: σ = .1, Blue: σ = .2,Black: σ = .3.
The tracker tracked in all the cases.

minimize the distance with respect to the transformation parameter a. The
gradient of Equation (6) with respect to the transformation parameters a
is

∇aDr =−2
M

∑
k=1

(
ω

k
u −ω

k
v

)
∇aω

k
v , (7)

where ∇aωk
v = 1

m ∑
m
i=1 ∇aΨk(vi). The gradient of Ψk(vi) with respect to

a is,
∇aΨ

k(vi) = ∇xΨ
k(vi) ·∇aT (x̃,a), (8)

where ∇aT (x̃,a) is a g× 2 Jacobian matrix of T and is given by ∇aT =
[ ∂T

∂a1
, . . . , ∂T

∂ag
]T . The gradient ∇xΨk(vi) is computed as,

∇xΨ
k(vi) =

1
σ2

s

n

∑
j=1

wk
jkkk(u j,vi)(πs(u j)− xi), (9)

where πs is a projection from d-dimensional pixel vector to its spatial
coordinates, such that πs(u) = x and σs is the spatial bandwidth parameter
used in kernel kkk. The transformation parameters are updated using the
following equation,

a(t +1) = a(t)−δ t∇aDr, (10)

where δ t is the time step.
Figure 1 shows results of tracking two people under different level of

Gaussian noise. Matlab command imnoise was used to add zero mean
Gaussian noise of σ = [.1, .2, .3]. The sample frames are shown in Figure
1(b), 1(c) and 1(e). The trajectories of the track points are also shown.
The tracker was able to track in all cases.
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