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Abstract

This paper presents a novel texture boundary detector called the standard deviation
ridge detector. At 43.29 frames per second, it is one of the few texture boundary detectors
that can run in realtime. With its Berkeley segmentation benchmark F-statistic of 0.62,
the algorithm outperforms all existing realtime texture boundary detectors. The use of the
boundary detector would induce noticable improvements to all realtime machine vision
applications. In addition, a ridge detector, which is better suited to realtime than other
approaches, is presented as part of the proposed algorithm.

1 Introduction

The past decade has seen great advancements in the field of texture analysis. Categorically,
many of these advancements have been driven by the invention of the texton approach to
texture analysis. At its core, this approach uses high-dimensional analysis of texture, where
the dimensions correspond to convolved filter responses. The development of textons has
lead to state-of-the-art developments in areas such as segmentation and classification. Refer
to [14] for a detailed description of this texton approach.

Unfortunately, the multiple convolutions (often 25 or more) and high-dimensional anal-
ysis required by the texton approach make it too slow to run in realtime. Consequently, most
of the gains from the past decade of texture research have been inapplicable to realtime ap-
plications. For this reason, this paper proposes a fast texture boundary detection algorithm
that, most importantly, is able to run in realtime.

This paper proposes the standard deviation ridge detector, a realtime texture boundary
detector that, as its name suggests, works by detecting ridges in an image’s standard deviation
space. There are two primary contributions made by this paper. Firstly, this paper presents
a new ridge detection algorithm that is more useful than existing ridge detection methods.
Secondly, the proposed texture boundary detector itself outperforms all existing realtime
texture boundary detectors.
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2 Related work

2.1 Realtime texture boundary detectors
Many texture boundary detectors exist, however almost all of them do not run in real-time.
The following three algorithms represent the best and most significant.

The simplest approach is anisotropic surround suppression [3]. This algorithm works
on the simple predicate that if an edge is surrounded by other edges of similar strength, then it
belongs to a repeating texture and should therefore be suppressed. This can be implemented
very fast as it consists of only two operations – a smooth and a subtraction. This extremely
fast algorithm only produces mediocre results however, which has lead to attempts being
made to improve its quality [11]. The algorithm proposed by this paper significantly im-
proves on the anisotropic surround suppression method in terms of quality, but not execution
speed.

The second approach is the second moment matrix [6, 9, 10]. This method detects
texture boundaries by identifying areas of locally unbalanced/anisotropic gradients, which
works because gradients tend to be isotropic (the same in all directions) within a repeat-
ing texture. The second moment matrix is one of the best approaches for realtime texture
boundary detection, and is popular because it serves as the basis for widely-known methods
like the Harris-Stephens corner detector [4]. Similarly, the proposed algorithm identifies lo-
cally unbalanced gradients. However, because the proposed algorithm analyses the standard
deviation space gradients instead of brightness gradients, it produces better results.

The convolved variance ridges algorithm [5] appears to be the best in realtime texture
boundary detection to date. Both this algorithm and the proposed algorithm are variance-
based. But unlike the convolved variance ridges algorithm, the proposed algorithm uses
unweighted rectangular smoothing and other alternatives instead of convolution. This not
only means the proposed algorithm runs over twice as fast, but because the unweighted
averages are actually better at representing texture, the quality of its results are also better.

2.2 Edge detectors
It is important to make the distinction between an edge detector and a boundary detector.
An edge detector, such as the widely used Canny edge detector [1], identifies low level
changes in the image. Often, this is not useful when dealing with real-world images. Martin,
Fowlkes and Malik [9] stated the problem well when they said: "The Canny edge detector
fires wildly inside textured regions where high-contrast edges are present, but no boundary
exists." Boundary detectors solve this problem because they work at a higher-level than edge
detectors – they attempt to find only the important divisions in the image, and unlike edge
detectors, they suppress all the unimportant ones. One of the reasons the proposed algorithm
is so useful is because it is a boundary detector and not an edge detector, as demonstrated by
the results in section 4.

2.3 Standard deviation texture analysis
The algorithm proposed by this paper uses standard deviation to identify texture boundaries.
As standard deviation is such a widely-known statistic, it has already been used in the past for
texture-aware algorithms such as segmentation by weighted aggregation [13] and an edge-
preserving smoothing filter [12]. The proposed work uses standard deviation similarly.
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2.4 Ridge detection algorithms
At its heart, the proposed algorithm is a ridge detection algorithm. Principally, existing ridge
detection algorithms can be categorised by whether they are designed to work on binary
images, or greyscale images. Both approaches have shortcomings and so are not useful for
realtime texture boundary detection.

Binary ridge detection involves applying repeated morphological operations, one good
example being the Canny edge detector’s hysteresis stage [1]. This requires a binary image,
which is where the problem lies. This approach would be likely to introduce a sensitive
thresholding parameter, as well as unintended thresholding artefacts. The quality of the
proposed algorithm would be compromised by such an approach.

In general, greyscale ridge detection algorithms require the gradients of an image to be
calculated. The gradients are used to locate one-dimensional local maxima in an image,
which are then accentuated, the result being that the ridges in the image are detected [7, 9].
The problem with this is, calculating the first and second derivatives of an image at multiple
orientations would involve convolving the image many times with the first-derivative Gaus-
sian kernel. As stated previously, convolutions are slow, and faster approximations can be
used when time is critical. The proposed algorithm does not use convolution for its ridge
detection, making it many times faster than existing algorithms.

With existing ridge detection algorithms being inadequate for the purpose of realtime
texture boundary detection, a new algorithm has been developed, which is one of the main
contributions of this paper.

3 Algorithm
Fundamentally, the proposed algorithm works by detecting ridges in the standard deviation
space of an image. Standard deviation is chosen for the following three reasons:

1. Unlike most features of texture, standard deviation can be calculated fast.

2. Standard deviation can detect texture boundaries (where two textures meet). This
follows logically. If only one texture was in the local neighbourhood, the standard
deviation only has to encapsulate the intra-class variation. When a second texture is
present, the standard deviation must represent the inter-class variation in addition to
the intra-class variation. This means that, standard deviation will peak wherever two
or more textures meet, as long as there is sufficient inter-class variation.

3. Every texture boundary detector also needs a way to suppress the intra-class variations
within a texture from appearing as boundaries. Standard deviation can achieve this as
well, because in general, for different areas within the same texture, standard devia-
tion tends to be approximately equal. This allows for a properly designed and tuned
algorithm to detect different areas of the same texture.

These triple benefits make standard deviation an excellent choice for a real-time algo-
rithm, and an illustration of this can be seen in figure 1. It must be noted that not all forms
of texture can be distinguished solely by standard deviation, but this is acceptable when the
primary goal is a realtime algorithm.

An important consideration for the proposed algorithm is that it is intended to be used
as a preprocessor to another realtime algorithm. This imposes a number of constraints on
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Figure 1: The standard deviation transform (right) of an image (left). The two most important
benefits of choosing standard deviation are clear: the boundaries are detected, while the
repeated variations in the texture are produce little response. The Canny edge map (middle)
is shown to emphasise how good standard deviation is at suppressing texture edges.

its design. First, it must run faster than realtime, so as to leave as much time as possible
for the higher-level algorithm. Second, because the classification stage (which of course is
very important) will be part of the higher-level algorithm, it is not included as part of this
algorithm. It must be strongly emphasized that this is why a machine learning/classification
stage is not presented as part of the algorithm in this paper. The proposed algorithm also
already outperforms all existing realtime methods, and so by induction, the argument is that
the proposed algorithm will continue to outperform them should a machine learning stage be
added to postprocess the algorithm’s results.

The proposed algorithm can be expressed by the equation 1:

bk(I) = rk(gs
k(I))−‖gs

k(I)‖ where gs
k(I) = gk(sk(I)) (1)

The output of each of these stages is shown in figure 3. In equation 1, the algorithm
begins with an m× n image I, which would be presented to the algorithm in the CIELAB
colour space. In this paper, section 3.1 describes sk(.), which calculates the standard devia-
tion transform of the image. Section 3.2 describes gk(.), which calculates the gradients when
given the standard deviation image. For convenience, the name gs

k(.) is given for succession
of these two operations. rk(.) identifies the ridges from the gradient image. Finally, the fi-
nal boundaries are detected by subtracting the gradient magnitude image ‖gs

k(I)‖ from the
ridge image. Both of these last two operations will be described in section 3.3. The pro-
posed algorithm only takes one parameter, the window size parameter k, which in essence
determines the cutoff wavelength between when variations should be considered texture (and
would therefore be suppressed) as opposed to when they should be considered a boundary
(and would therefore be emphasised). The parameter is intuitive, as illustrated in figure 2.

3.1 Standard deviation transform

The algorithm begins by calculating the standard deviation of each pixel neighbourhood, in
accordance with equation 2:

sk(I) =
√
‖µk(I2)−µk(I)2‖ (2)
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Figure 2: The effect of k on the proposed standard deviation ridge algorithm, arranged as
follows: original image (far left), k = 4 (middle left), k = 8 (middle right) and k = 16 (far
right). Hue represents boundary orientation.

µk(.) is the smoothing operator, calculated as the local mean within a (2k+1)× (2k+1)
rectangular neighbourhood centered on each pixel. As each channel would be smoothed
separately, the L2 norm is used to combine the three channels into a single standard deviation
measure.

3.2 Gradient vector transform
Next, the gradient image is calculated from the standard deviation image. The purpose for
this stage is as follows. Standard deviation is approximately equal at different areas in the
same texture. This means that textured areas will have very little gradient in the standard
deviation space, and instead, gradients will generally only be present on texture boundaries.
So by executing this stage, the repeating variations within texture can be suppressed, and
texture boundaries can be enhanced. Secondarily, calculating the gradient is a necessary step
in order to perform ridge detection.

This stage involves calculating the gradient vector individually for each pixel neighbour-
hood. The term gradient vector is used because both the gradient strength and direction are
calculated. This can be formulated as follows:

gk(S) =


g1,1 g1,2 · · · g1,n
g2,1 g2,2 · · · g2,n

...
...

. . .
...

gm,1 gm,2 · · · gm,n

 (3)

gx,y = ∑
(p,q)∈Ω

(
S̄(x+p),(y+q)− S̄(x−p),(y−q)

)
×
(

p
q

)
(4)

where
S̄ = µk(S)

Ω =
{(

p1
q1

)
,

(
p2
q2

)
, . . . ,

(
pω

qω

)}
(5)

pi = round
(

k cos
(

iπ
ω

))
and qi = round

(
k sin

(
iπ
ω

))
Equation 3 expresses that each individual pixel is considered individually. Equation 4

calculates the gradient vector for a single pixel. In this equation, the symbol S represents the
standard deviation image, which would have been calculated during the previous stage of the
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I sk(I) gs
k(I) rk(gs

k(I)) bk(I)

Figure 3: The proposed standard deviation ridge detector at different stages. For the three
right panels, hue represents gradient/ridge/boundary orientation. k = 8 in all cases.

algorithm. Basically, it calculates the one-dimensional gradients at a number of orientations
(determined by ω), and takes the vector sum. The resulting gradient vector will be directed
along the principal positive direction of the gradient.

Tests have shown that it is effective to always use ω = 8 in all cases, as this consistently
produces good results. All calculations in this paper use ω = 8 for this reason. It is not
unusual for a parameter like this to be fixed, the popular Canny edge detector [1] similarly
limits its calculations to four orientations.

The smoothed version S̄ of the standard deviation image S is used in equation 4. This
requires some explanation. It can be seen in equation 4 that each one-dimensional gradient is
only calculated from two points on S̄. This calculation runs very fast because only two points
are used, and allows the cost of calculating S̄ to be amortised over several usages during the
evaluation of equation 4. The reason S̄ is used is, because each pixel in S̄ represents the mean
of its respective pixel neighbourhood, sampling only two points in S̄ will produce a robust
estimation of the gradient in that direction. If S̄ were not used, sampling such a few number
of points would be likely to introduce noise and unreliable results into the algorithm.

3.3 Ridge detection

The previous stage detects gradients only. This is inadequate because, as observed by many
researchers before [9], each ridge will produce a double response in the gradient space –
one response for the negative gradient on one side of the ridge, and another response for
the positive gradient on the other side. This can be seen in the gradient image in figure 3.
This stage combines the double gradient responses, so that each ridge produces only a single
response.

rk(G) =


r1,1 r1,2 · · · r1,n
r2,1 r2,2 · · · r2,n

...
...

. . .
...

rm,1 rm,2 · · · rm,n

 (6)

rx,y = max
(p,q)∈Ω

√[
−G(x+p),(y+q) •G(x−p),(y−q)

]+ (7)

G represents the gradient vector image, which would have been calculated by the pre-
vious stage. Ω was defined in equation 5. The [.]+ operator denotes a positive bounding
function, which constrains values to the range zero or above. That is, any value less than
zero is replaced with zero. Finally, the • operator denotes the dot product.
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Similar to the previous stage, this stage considers each pixel individually, as expressed
by equation 6. At each particular pixel, equation 7 measures the ridge strength of a number
of orientations, and returns the strongest overall response. The ridge strength for a particular
orientation is measured by calculating how strongly the gradients on either side of the pixel
point towards each other, as this is the defining characteristic of a ridge. The dot product
and square root make this calculation in essence like an oriented geometric mean, which
conceptually means that there will be no response if, instead of two opposing gradients on
either side of the ridge, there is only one gradient present. This stops false positives from
occuring.

The result of rk(.) is a ridge strength image. It turns out that, normally, ridges are overde-
tected in rk(.). That means, they appear thicker than they actually are, and sometimes, par-
ticularly around corners, a single ridge can be detected multiple times at slightly different
locations. An illustration of this can be seen in figure 3. All of this occurs because the ridge
strengths are calculated from small samples of only two points each (see equation 7). The
most obvious way to solve this would be to use a larger sample size in the calculation of
the ridge strengths. Although this would solve the problem, it would also slow down the
algorithm. In the following paragraphs, this paper proposes a faster approach that achieves
the same purpose.

Equation 1, which defines the overall algorithm, shows that the final step is the subtrac-
tion of the gradient magnitude image ‖gs

k(I)‖ from the ridge image rk(I). This subtraction
removes many of the overdetected ridges from the ridge image. The logic for this is as fol-
lows. A ridge can only exist between gradients – it must have a positive gradient on one
side, and a negative gradient on the other. Therefore, a ridge cannot be located at the same
position as a gradient. By subtracting the gradient image from the ridge image, any ridges
that exist where gradients exist are removed.

This is highly effective due to the intersection of two axioms: (1) every ridge is sur-
rounded by gradients, and (2) any mislocalisation of a ridge will occur in its surrounding
area. Therefore, because of (1) and (2), practically all of the unfavourable ridge responses
are removed. The result is a clean ridge detection which can be calculated very fast. This
final ridge detection is returned as the final boundary detection of the algorithm.

4 Results
The proposed standard deviation ridge algorithm was implemented as a single-threaded C++
program. Tests show that the proposed algorithm has produced many highly favourable
results. A few examples of this can be seen in figure 4.

Unless otherwise stated, the window size parameter k = 8 in all illustrations in this paper.
This value was empirically chosen as it generally produced good results for the size of images
in the test set. A likely explanation for this is, setting k = 8 sets the window size to be 15
(= 2k +1), and texture in 320×240 images normally has a wavelength of 15 pixels or less.
Therefore it is effectively detected by this window size. It is also important to point out that
the choice of k has no effect on the speed of the algorithm.

4.1 Speed results
When tested on 2594 320×240 frames, the proposed algorithm’s mean run time was 0.0231
seconds, and so can therefore process 43.29 frames per second. Even with this highly
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Figure 4: Example results (bottom row) of the proposed standard deviation ridge algorithm
on some images (top row). Hue represents boundary orientation and k = 8 in all cases.

(a) (b)

Figure 5: (a) The Berkeley segmentation benchmark precision-recall curves of the pro-
posed standard deviation ridge (SDR) detector with k = 8, against the second moment ma-
trix (2MM) with σ = 2, a Gaussian derivative (GD) with σ = 2, and the convolved variance
ridges (CVR) algorithm with σ = 7/6. All parameters were optimised for the Berkeley
benchmark. (b) SDR algorithm (right) compared to the traditional realtime texture boundary
detector – anisotropic suppression (left). For comparison, this is the same image used by [3]
and [11]. In the result image for the SDR algorithm, hue represents boundary orientation.

favourable result, there is always the possibility that further optimisations could have been
made to the code to improve its speed further. This measurement was taken using an Intel
Core 2 Duo 2.66 Ghz machine. Additionally, the time required to capture the image from the
camera was not included to ensure that only the speed of the proposed algorithm was being
measured.

4.2 Berkeley segmentation benchmark results

To objectively demonstrate the quality of the proposed algorithm, this paper illustrates the
algorithm’s performance on the Berkeley segmentation benchmark [8]. This benchmark
works by algorithmically (and therefore objectively) comparing a segmentation algorithm’s
result to human-defined ground truths.

The performance of algorithms on the Berkeley segmentation benchmark can be com-
pared by their precision-recall curves, figure 5 shows the relevant ones. Figure 5 clearly
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shows the proposed standard deviation ridge algorithm outperforming all other algorithms
with its precision-recall.

Another way to compare the precision-recall curves is to use the F-statistic – a single
value that sums up an algorithm’s entire performance on the Berkeley dataset. The human
ground-truths establish that a perfect algorithm would score an F-statistic of 0.79. The worst-
case score can be found by using a random number generator for boundary detection, which
achieves a score of 0.41. Standard deviation ridge detection scores an F-statistic of 0.62.
This can be compared to the second moment matrix, which achieves 0.57, and the convolved
variance ridge algorithm, which scores 0.59. These results demonstrate that the proposed
algorithm improves on all prior realtime texture boundary detectors.

Although there are algorithms that score higher on the Berkeley benchmark, all of them
require much more time to execute. For example, boosted edge learning [2] takes around
12 seconds per image, gaining a F-statistic of 0.66 on the same Berkeley benchmark. Being
upward of 500 times slower however, such approaches are not intended for realtime applica-
tions, and so cannot be compared to a realtime context. The proposed algorithm substantially
outperforms these approaches on speed.

5 Conclusion

From the results it can be seen that the proposed standard deviation ridge detector has a num-
ber of substantial improvements over previous work. Unlike most texture boundary detec-
tors, the proposed algorithm runs faster than realtime, with a measured speed of 43.29 frames
per second. It also produces better quality results than existing realtime texture boundary de-
tectors with its Berkeley benchmark F-statistic of 0.62. In particular, it even outperforms
the state-of-the-art algorithms such as the second moment matrix and the convolved vari-
ance ridges algorithm, which can seen clearly from the precision-recall curves in figure 5.
Additionally, the proposed algorithm is a boundary detector, not an edge detector, and so it
suppresses unimportant texture edges which are unavoidable when using just a simple edge
detector. Finally, the proposed algorithm requires only one parameter, which is an intuitive
window size parameter. This makes the algorithm easy to use.

Secondarily, the favourable results of the standard deviation ridge detector have proven
the worth of the novel ridge detection algorithm that it uses. The ridge detection algorithm
(a) does not require a binary image, meaning no unnecessary artefacts or parameters are
introduced by a thresholding stage, and (b) is faster than existing greyscale ridge detection
algorithms because it does not require convolution. Future work could involve applying this
ridge detection algorithm to other fields.

The proposed standard deviation ridge algorithm can be used as a preprocessing stage to
improve realtime vision applications by making them texture-aware. It is one of the few real-
time boundary detectors available, meaning it is able to suppress unimportant texture varia-
tions while emphasising important texture boundaries. The algorithm’s Berkeley benchmark
F-statistic score of 0.62 and its realtime execution speed of 43.29 frames per second fully
back up this claim.
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