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Figure 1:Acquisition model of the isometrically embedded surface observed by a
camera.
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Figure 2: Overview of the optimization strategy. First an initial approximated
solution is computed to start the optimization.

The purpose of this paper is to allow reconstruction of deformable
surfaces isometrically embedded in 3D, e.g. a flag waving at the wind
or someone waving a sheet of paper, from image data. It is assumed
that a set of non-calibrated images is available with matched features be-
tween them. For simplicity the cameras here are restricted to be scale-
orthographic, each modeled by a single scale factor and extrinsic param-
eters. Figure 1 illustrates the acquisition process. From asingle flat sur-
face, modeled as a set of features, 3D isometric embeddings are generated
by passing the feature points through embedding functionsI k. These are
then viewed by different cameras yielding the observed images.

There are two problems that can be formulated with images of iso-
metrically embedded surfaces. The first consists of estimating the 3D
embedding (pose) of the surface in a particular imagek, when the flat sur-
face is assumed to be known. In figure 1 this roughly means estimating (b)
given (a) and (c). This problem will be called the pose estimation prob-
lem, but will not be the focus of this paper. The second problem is given
several images estimate the surface that generates them. Inthe figure this
means from several observations (c), obtain (a). Here this problem shall
be named the surface estimation problem and the embeddings (b) are not
considered important. Although not done yet, a future objective will be
to unify both problems, i.e. estimate the generating surface (a) and the
various embeddings (b) given only the set of images (c). Thiscan be triv-
ially achieved by first estimating the surface and then applying a known
pose estimation algorithm, future work will focus on integrating both in a
single problem.

This paper models accurately flexible flat surfaces following a sim-
ilar strategy presented in [1] where an initial approximation is given by
a sequential algorithm. This approximation is then fed to a global cost
function, further refining the result and hopefully converging to the global
minimum. To better capture global constraints instead of just measuring
local fit in which integration error can accumulate a different optimiza-
tion function is used. Here we deal with the more realistic assumption
that data can be missing, which is of utmost importance in deformable
surfaces where self occlusion and partial observations arecommon. This
paper handles missing data and provides the required performance tests.
Finally, one important contribution is how to obtain secondorder infor-
mation about the 3D embeddings, such as how much the surface bends,
which can be used for measurements and reused in the cost function. Al-
though the surfaces are assumed to be locally planar, secondorder infor-
mation provides relevant information in the presence of a sparser data set,
as so often occurs.

In a real world example, 12 images of a bed cover were taken (see
figure 3) at various angles and differently folded. In these images, 118
different points were hand clicked (when visible) and the algorithm was

Figure 3:Images (3 out of 12) taken of a bed cover made of cloth.

Figure 4: Reconstruction of the bed cover cloth overlaid on an image taken of the cloth
laying flat. Blue crosses are the reference clicked points, red circles are the results given by the
algorithm.

run on them. The results obtained are shown in figure 4 (overlaid on a
picture taken of the flat cloth fabric). Results provide a benchmark for
real world data, hand clicked, not very dense for the amount of bending,
and for embeddings not truly obeying the isometric properties since cloth
is easily sheared.

When a flat surface is embedded in 3-D one important property is
verified: through every point of the embedded surface there is a direction
where it is locally linear. This means that through each point, the em-
bedding is allowed to curve in only one direction, making it locally like
a cylinder (this is a second order approximation). Since theword “cur-
vature” has a very precise meaning (all the surfaces here considered have
0 curvature), here this embedding-specific second order property shall be
called “bend” at a point, and its “bend radius” will be the radius of the
smallest osculating circle through that point. In differential geometry this
terminology refers to the sectional curvature.

Bend radius and axis were computed for an embedding wrapped around
a cylinder (bend radius at each point is 1). Figure 5 shows theobtained re-
sults. Note that although at most points the bend axis is similar, there are a
few outliers. The histogram shows that bend radius estimates concentrate
around the correct value but some noise exist.

[1] Ricardo Ferreira, João Xavier, and João Costeira. Reconstruction
of isometrically deformable flat surfaces in 3d from multiple camera
images.ICASSP, 2009.
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Figure 5: Results of estimating the bending axis and radius from the data. Left: Image to
be measured. Middle: The computed axis of bend at each point is shown. Right: histogram of
the computed radius at each point (the radius is normalized to be 1 unit).


