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Abstract

A method for human head pose estimation in multicamera environments is proposed.
The method computes the textured visual hull of the subject and unfolds the texture of
the head on a hypothetical sphere around it, whose parameterization is iteratively rotated
so that the face eventually occurs on its equator. This gives rise to a spherical image,
in which face detection is simplified, because exactly one frontal face is guaranteed to
appear in it. In this image, the face center yields two components of pose (yaw, pitch),
while the third (roll) is retrieved from the orientation of the major symmetry axis of the
face. Face detection applied on the original images reduces the required iterations and
anchors tracking drift. The method is demonstrated and evaluated in several data sets,
including ones with known ground truth. Experimental results show that the proposed
method is accurate and robust to distant imaging, despite the low-resolution appearance
of subjects.

1 Introduction
3D head pose estimation constitutes a special problem of human motion modeling. An
accurate and robust solution to this problem is of particular interest, because the 3D head
pose of a human conveys important information on his/her behavior. Significant advances
have been achieved in human head pose estimation for relatively close-range images, but the
related available methods are not directly applicable in wider-range imaging conditions. In
such situations, a human head is imaged in relatively low resolution, illumination artifacts
are frequent, and occlusions are expected.

Existing multiview head pose estimation methods perform conventional single-view head
pose estimation and then, fuse the results. Thus, they inherit the requirement for unoccluded
face appearances and do not treat occlusions systematically. Due to lack of support, addi-
tional problems in face detection (FDn) itself are encountered. In this paper, we attempt to
improve current state-of-the art results in two ways. First, information about surface struc-
ture is combined with FDn to assist head localization and its coarse orientation estimation.
Second, visibility information is utilized to compensate for the large viewing distance and
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Figure 1: Method overview. Top row: input images. Bottom row: visual hull with face tex-
ture mapped on a localized hypothetical spherical head (left); spherical head image (middle);
visual hull (right). 3D head pose results are superimposed, in 3D illustrations.

occlusions, by collecting all visible facial texture fragments in a single image, where exactly
one frontal view of the face is guaranteed to appear at a known spatial scale. This not only
provides substantially better support for FDn but also simplifies it, as only a frontal face
appearance is sought.

The proposed method is overviewed in Fig. 1. The visual hull of a person is obtained
from images acquired synchronously from multiple viewpoints. While moving, the person’s
head is tracked in 3D. The texture on the surface of the hull is collected from multiple views
and projected on a hypothetical sphere S that is concentric to the person’s head. This forms
a spherical image Is of the head, containing one frontal face appearance at a known spatial
scale. Detecting the face center ~κ in Is, yields an estimate of the head’s 3D orientation ~o,
whose spherical coordinates are the pitch and yaw components of an absolute pose estimate.
The 2D orientation γ of the face in the spherical image yields vector ~r, which determines
the roll component of this estimate. To reduce the spherical image distortions complicating
FDn, the parameterization of S is continuously rotated so that the center of the face projects
on its equator. In addition, FDn in the original images supports pose estimation by providing
a coarse orientation estimate, which accelerates the method and improves robustness.

The remainder of this paper is organized as follows. In Sec. 2, related work is reviewed.
In Sec. 3, the modules that support the proposed method, are presented. In Sec. 4, the
proposed method for 3D head pose estimation is formulated and, in Sec. 5, is evaluated
through several experiments. Sec. 6 summarizes this work.

2 Related work
This section reviews pertinent work in head localization and pose estimation. A recent
overview of head pose estimation in computer vision is provided in [7].

Towards solving the head pose estimation problem, several methods assume that the face
occupies most of the image. These methods encounter significant challenges when applied
to distant views of a human subject. Templates [24] and detector-arrays [16], which coarsely
pose-classify the observed face, require extensive training and exhibit a large rate of spurious
detections; [10, 25] use 3D information to reduce this rate. Nonlinear regression [27] and
manifold embedding [3, 12, 17] methods, vectorize the face image region or its features
[8, 27] into a space where coordinates correspond to head poses. However, in wide range
imaging, it is difficult to accurately segment the face and align it with the vectorized image
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region. Similarly, methods that track rigid formations of landmarks [11, 13, 22, 30] or feature
points [15, 23], are difficult to apply in poor resolution images due to inaccurate localization
of such points. Methods that use flexible models instead [33] are more robust, but require that
all or most of the formation is visible, which is not guaranteed for general subject motion.

Better performing in poor resolution images, some methods use a frontal view of the
face and map it as texture on a hypothetical surface. Pose is estimated as the posture of
this surface that exhibits the highest photoconsistency with the acquired image. In [18],
a hypothetical cylinder was utilized to explain self-occlusions of this texture. In [29], an
artificial 3D model of the human head was employed. In [6], the surface is pre-textured,
thus not requiring a training view. Expressions and small occlusions are treated by periodic
update of the reference texture [18, 29] but then, the estimate is subject to the error at the
update frame.

In multicamera systems, pose has been estimated by single-camera estimation methods
applied individually in each view, followed by a fusion of the individual estimates based on
conditional probability [32], a Bayesian classifier [34], and a joint likelihood-estimator [28].
However, this strategy is reported to yield only coarse pose estimation, probably due to the
overly coarse pose-classification obtained from each view. In [25], correspondence of FDns
across cameras is required to increase robustness. In a different approach [4], skin-colored
pixels are backprojected from multiple views onto a hypothetical ovaloid; the centroid of the
skin-colored blob on it yields a coarse orientation estimate. In [26], a textured visual hull is
employed to detect the face of a person, but it is assumed that the person is facing forward
and head pose is determined by his/her motion trajectory.

The proposed method is novel in the following ways. It combines a face detector (FDr)
with the 3D structure information of the visual hull, to locate the head in the acquired images
and assist FDn. A hypothetical surface approximating the head’s surface is employed in the
composition of a “multiview image” (Is), whose formation collects visible texture fragments
of the head from multiple views. This compensates for the reduction in visible facial image
area imposed by occlusions. In this way, not only occlusions are treated, but the constraint
that a significant portion of the face should be visible in the same view, is relaxed. Finally,
FDn in Is is simplified, as exactly one frontal face appears, at a known spatial scale.

3 Building blocks
A synchronized multicamera system is assumed. Each camera i is located at 3D point Ki,
has a projection matrix Pi and provides image Ii. Besides background subtraction in the
computation of the visual hull, images Ii are treated as monochromatic. The term frame
refers to all images Ii, synchronously acquired at a certain moment in time.

Visual hull. Images Ii are background subtracted [35] yielding binary images Bi. The
volume occupied by humans is approximated by their visual hulls and efficiently computed
from Bis as a volumetric occupancy grid, as in [20]. In our case, though, a voxel takes the
value of 1 if occupied and −1 if not. This space is then finely smoothed and the visual hull
is extracted as its 0-isosurface, using [19]. For each frame, the visual hull is encoded as a
mesh M of triangles. In all experiments, voxel size was set to 1cm3.

Head localization. Due to the shape of the human head, it is assumed that its 3D po-
sition can be approximated with the center ~c of a hypothetical sphere S of radius ρ (16cm)
registered with the head. Let ~s0 be a coarse estimate of the head’s center. At each frame, S
is centered at ~s0, which is the head center position as it has been estimated in the previous
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Figure 2: Detection of at most one face in three spherical images.

frame. In the first frame,~s0 is provided by triangulation of FDns in Ii.
The estimate ~s0 is iteratively refined with the following variant of the Mean-Shift algo-

rithm [9]. In each iteration j, the points ~pk ∈M within S are retrieved. Their distances from
S are dk = | |~pk−~s j−1| − ρ|. The center of S is translated to ~s j = ∑(~pk ·wk)/∑wk, where
wk = ρ−dk. The process terminates when distance |~s j−~s j−1| falls below 1mm (92% of the
times, in less than 6 iterations) or a maximum number of iterations (10) has been reached.
The final~s j constitutes the estimate of the head’s mass center~c. The areas Ai where S projects
in images Ii and corresponding radii ρi are calculated for later use (see Sec. 4.1).

Texture mapping. Texture is mapped on M from Iis, utilizing a Z-buffer [5] per view
to account for visibility. The Z-buffer of each view determines which triangles are visible
to it, thus facilitating the association of each triangle in M to the views from which it is
visible. The computation of texture intensity φ at a point~x on a triangle T ∈M proceeds as
follows. Point~x is projected on the images that T is visible. Let i′ index these images. The
blending φ of the appearances of ~x in Ii′ is φ = ∑βi′φi′/∑βi′ , where φi′ = Ii′(Pi′~x) and βi is
the projection area of T in Ii′ , so that distal and oblique appearances of T are weighted less.

Face detection. We approach 2D orientation-invariant FDn in a generic way, utilizing a
publicly available frontal face detector [31] much like a template. A FDr though is advan-
tageous to a template (e.g. a reference view) as it is more robust to individual differences of
human subjects, expressions, and illumination effects. The images on which FDn is applied
are, by construction, guaranteed to contain exactly one frontal face view at a known spatial
scale, but in an arbitrary 2D orientation (see Sec. 4.2).

The employed FDr detects a frontal face in an image ι , but assumes that the face is ver-
tically oriented. To cast FDn invariant to 2D orientation, ι is center-rotated for a range of
orientations Γ = [0,2π) (quantized by 1◦). Input parameters to this operation is Γ and the
range of acceptable face sizes M. This returns multiple FDns, indexed by j, each one associ-
ated with position ~κ j ∈ ι and orientation γ j ∈ Γ. Orientation γ is computed assuming that a
frontal face appearance has a vertical symmetry. Let the mean angle µ of the orientations in
g and the angular interval α = [µ−ω,µ + ω] (ω = 10◦). For every orientation γ j ∈ α , the
region around ~κ is rotated by γ j and bisected at its middle column. One of the counterparts
is horizontally reflected and the Normalized Cross Correlation (NCC) of both is computed,
as a measure of symmetry between them. Orientation γ is set equal to that minimizing NCC,
thus selecting the candidate FDn exhibiting the greatest symmetry. For a spherical ι , the
image is “wrapped-around” on its edges and M is defined in units of solid angle. FDns are
grouped by proximity and orientation, to be pairwisely closer than 0.1 ·max(M) and differ
less than 10◦. The group g with the greatest cardinality is selected. Let the centroid of its
members be ~κ . If not null, the result of FDn is locus ~κ ∈ ι and orientation γ of the FDn.

The technique is illustrated in Fig. 2. In the figures, large arrows indicate ~κ and γ and
small ones ~κ j and γ j in g. The two rightmost images feature spurious detections that are
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Figure 3: Coarse orientation estimation. FDn in Ai of Ii (three rightmost images) determines
the optical rays through face centers intersecting S (2nd from right); circle radii indicate
FDn sizes, required to be compatible with the projection size of S in each Ii. This yields
intersection points ~qi′ , through which coarse orientation estimate ~oc is robustly estimated
(right).

rejected, as their groups have less members than the corresponding gs.

4 Head pose estimation

4.1 Coarse orientation estimation

A coarse estimate ~oc of the head’s 3D orientation is obtained by performing FDn (as in
Sec. 3) in regions Ai and finding the intersection of the optical ray(s) passing through the
image face center(s), with S (Fig. 3). The process is triggered by a FDn occurring in some
Ai.

When executing FDn in Ai, its input size range M is individually modulated per view. As
in [25], this casts M to be equivalent to the projection area Ai, pruning spurious FDns that
occur centered at Ai but at incompatible sizes to the true face appearance.

Due to occlusions and FDn failures, FDns are less than views. Let FDns be indexed by
t. For each FDn, the line Lt from camera center Kt through the center point of the FDn ~κt , in
At , intersects S at~qt . Then,~vt =~qt−~c approximates the head’s orientation. Point~qt is the in-
tersection of S with Lt that is closest to Kt . Two points on Lt are Kt and (PT

t (PtPT
t )−1)[~κT

t 1]T

[14, p. 148]. If FDn returns a null result,~oc is assigned with the previous orientation estimate.
A more accurate approach would be to find the intersections of all Lt with M instead of S,
but it is computationally more complex and of no impact on the outcome of pose estimation.

A representative~oc of all~vt that is robust to outliers, such as q2 in Fig. 3, is computed as
follows. For each~vt , its relative angles to all other~vts are computed; let ht be the median of
these angles for each~vt . Let also, δ = mint(ht) and t = argmint(ht). Then, the mean of the
input vectors with relative angles less than 2.5δ to~vt is assigned to ~oc.

4.2 Pose estimation

Given ~oc, the following process estimates the head pose. The texture of the portion of M
inside S is projected on S, with ~c as the projection center, yielding spherical image Is on S.
Pose estimation is based on FDn in Is and is computed from the ~κ and γ of this FDn. Note
that the structure of Is (spherical) is independent to the shape of S, but determined by the
parameterization by which points are sampled on S to form an image.

A convenient way to create Is is to sample the projected texture on S, assuming points
on S in a spherical coordinate parameterization P , its coordinates quantized by angle ψ .
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Unfortunately, if the face is projected near one of the poles of the sphere, it becomes highly
distorted in Is and FDn becomes problematic. Thus, points of P are rotated about~c, so that
the middle of the face in Is (~κ) is sampled by a point on the equator of P .

The whole process proceeds iteratively. This is because a face projected further from the
equator appears distorted in Is and, consequently, can be inaccurately localized. In the worst
case, the face could be projected near a pole causing a failure in FDn. To avoid this in the
first iteration and, also, to avoid potential drift from the previous frame, P is initially rotated
so that its equator occurs in the direction pointed by ~oc.

The result of pose estimation is vectors ~o and~r, from which the resulting, absolute yaw
Θτ , pitch Φτ , and roll Ωτ estimates are derived. In each iteration n, the components of the
current pose estimate are Θn (yaw), Φn (pitch) and Ωn (roll). Initially, ~o0 is set equal to ~oc
and Θ0, Φ0 are set equal to the spherical coordinates of~o0. In addition, Ω0 is set equal to 0◦.
In each iteration n, the following three operations are performed:

(1) Parameterization: P is rotated about~c so that ~on−1 points its equator. The rotation
matrix is R = R1Rx(Ωn), where R1[100]T =~on−1, and Rx(Ωn) a rotation of Ωn about the xx′

axis.
(2) Spherical image formation: Each ~p ∈P corresponds to a pixel ε in Is. The line

segment from ~p to~c intersects a triangle of M at~x, computed as in [21]. The texture intensity
at ~x is assigned to Is(ε). If multiple intersections are found, the one closest to S is selected;
this occurs in concave parts of the head (e.g. a ponytail). In points where S occurs within M
(the neck), the intersection is null and the intensity is set to 0.

(3) Face detection: Performed on Is, as in Sec 3, yielding ~κn and γn, or null. The point
~pn ∈P , corresponding to ~κn, is looked-up and the current orientation estimate, ~on, is set as
~on = ~pn−~c. Input size range M was restricted to [60◦,160◦] of solid angle.

In iteration n, ~on is the current orientation estimate. The spherical coordinates of ~on, Θn
and Φn, are absolute yaw and pitch estimates, respectively. The absolute roll estimate, Ωn,
can be computed as follows. Let~r be a vector tangent to S at ~pn and oriented as γn. Let, also,
Ro be the rotation matrix that maps ~on to zz′ (Ro [001]T =~on). The angle of~ro with the yy′

axis is Ωn, where~ro is the projection of a unit vector Ro ·~r on the XY plane. Thus, in the
“parameterization” step of the iterative process, R1 brings the detected face to the center of
Is and Rx(Ωn) aligns its vertical axis with the image columns.

The process terminates at iteration τ , in which any of the following conditions is met: (a)
The angle between~on and~on−1 becomes below 1◦, (b) A maximum number (5) of iterations
is reached, (c) No face is detected; in this case, ~oc is returned. The pose estimate is ~o =~oτ

and~r =~rτ , from which (Θτ ,Φτ ,Ωτ) are calculated. The first iteration is the most important,
as convergence occurs in 2-3 iterations with the last ones refining ~on by less than 3◦.

In the proposed method, the coarse orientation estimate ~oc plays a dual role. First, it
conserves computational time as it places P’s equator near the face center and, thus, fewer
iterations are required for convergence. It also serves as an anti-drift mechanism, so that even
if pose estimation was erroneous in the previous frame it has no consequence in the current
frame. Whatsoever, ~oc is not a prerequisite for the method and, thus, the system can cope
with failures of FDn in areas Ai. If such FDns occur, they are utilized. If not, the process is
based on the previous-frame estimate of ~o, until the next FDn occurs.

From a computational viewpoint, Is’s formation is accelerated by an index E , which is a
2D buffer equal in size to Is. Triangles within S are projected from~c to S and corresponding
elements in E are marked with their labels. When forming Is(ε), the intersection triangle
is looked-up in E (ε). In the experiments of Sec. 5.2, processing a frame takes 90sec on
average by a MATLAB implementation, the most time-consuming part being the synthesis
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of Is. A GPU implementation may accelerate this process, treating it as texture-mapping.

5 Experiments
The proposed method has been evaluated based on a series of experiments1. Most exper-
iments took place in a 5× 5m2 room where cameras are used to visually interpret human
activity. Eight cameras are mounted at the corners and at the in-between mid-wall points of
the room viewing it in yaw-steps of ' 45◦. The cameras are pointing at the floor center in a
relative pitch of '−43◦. Their height is ' 2.6m from the floor. At the same height, a ninth
camera is mounted on the ceiling, overlooking the floor. All cameras have 66◦× 51◦ FOV
and 960×1280 resolution. It is worth noting that the specific camera setup has been decided
to generically serve the purposes of human activity interpretation and was not optimized for
the particular task of 3D head pose estimation. A public dataset [2] was also utilized in
Sec. 5.2, as well as in Figs. 1 and 3. Experiments in Sec. 5.1 compare results quantitatively
against state-of-the-art in the context of distant viewing, indicating that the proposed method
is more accurate than other distant-viewing methods [28, 32, 34].

In Sec. 5.2, the proposed method is demonstrated in challenging situations not handled
by existing methods (broad range of poses and scene arrangements, severe occlusions, etc).
Throughout the experiments, head shapes and sizes of the subjects exhibit significant vari-
ability (different adult subjects, small female mannequin). Therefore, we find no reason
to expect individual differences to dramatically affect performance as long as faces are de-
tectable by the FDr. It is noted that tracking was not included in the experiments, so that
accuracy of pose estimation is assessed without its improvement; the incorporation of the
proposed method within a robust tracking framework is left for future work.

5.1 Ground truth dataset
To the best of our knowledge, there is currently no publicly available multiview dataset which
(a) includes high-precision head pose ground truth data, (b) provides images for building a
background model of the scene or the model itself, and (c) observes human subjects from
distant viewpoints. Thus, such a dataset was created [1]. The dataset was collected using a
mannequin’s head, mounted on a tripod with 2 degrees of freedom (pitch, yaw) and marked
rotation gratings. The head’s was ' 1.3m from the floor, emulating the head locus of a
sitting person. To modulate roll, the head was unmounted and rotated by 90◦; thus, during
this modulation, ground truth for yaw was unavailable.

The main part of the dataset sampled a hemisphere of poses, consisting of six 360◦ yaw-
rotations, in steps of 20◦. In each, the first and last frame imaged the same pose. The pitch
angles of the yaw-rotations were {0◦,20◦,40◦,60◦,80◦,90◦}. In two additional sequences,
pitch and roll were individually modulated within the rotation limits of the tripod, that is,
[0◦,90◦] and [−80◦,80◦], respectively, in steps of 10◦. During the roll modulation the head
had a 40◦ pitch. Tripod and world coordinate frames were aligned. Resolution of Is was set
to 360× 720 (ψ = .5◦). Except for the roll sequence, the tripod was still and head centers
occurred on a hemisphere. As an indication of head localization error, the average distance
of the estimated centers from their least-squares fitting sphere was 2.7mm.

In Table 1, head pose results for the ground truth dataset are presented. In its left col-
umn, key poses of the 60◦-pitch yaw-rotation (top), the pitch (middle) and the roll (bottom)

1Results from all experiments and all views are presented in the accompanying video.
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Poses Yaw Pitch Roll
Hemisphere 5.4◦ (6.1◦) 2.8◦ (2.4◦) 8.0◦ (7.6◦)
Usual poses 2.3◦ (2.1◦) 2.1◦ (1.6◦) 5.3◦ (4.6◦)
Pitch 1.9◦ (1.2◦) 2.4◦ (1.6◦) 4.7◦ (3.9◦)
Roll unknown 3.5◦ (3.0◦) 6.7◦ (5.3◦)
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Table 1: Error and indicative images, for ground truth experiments. For these experiments,
the minor table in the middle row reads mean and standard deviation of estimation error.

sequences are shown; the cyan line plots ~c’s trajectory. In the right column, the following
data are reported. In the top row, errors for the hemisphere of poses are plotted: mean errors
per yaw-rotation are plot on leftmost graph; middle and right graphs plot the errors for the
additional pitch and roll sequences, respectively. The middle row, contains a table within
which errors are averaged. Labels of this table correspond to the aforementioned rotations of
the mannequin head: in hemisphere the error for the 6 yaw rotations is averaged and in usual
poses head pitch was in [0◦,60◦] emulating typical poses of a human subject in the room. In
the bottom row of Table 1, average error in the hemisphere, pitch and roll sequences is plot
as a function of pitch or roll.

Comparison of results with the overview tables in [7] indicates approximately 10◦ ac-
curacy improvement of currently published results concerning distant head viewing. On
average, [32] yields more than 12◦ and [34] 33.56◦ of error. In [28], precision is up to 30◦

as 12 yaw-poses of a person’s head are distinguished. It is also pointed out that the proposed
method estimates all 3 angles of pose, while [32, 34] only 2 (pitch and yaw). The method
in Sec. 4.2 refines the coarse estimate of Sec. 4.1, by 14.2◦ on average. We also note that
published results are evaluated only for smaller ranges of poses, which are referred to as
usual poses, in the middle row table of Table 1.

In the hemisphere measurements, errors tend to grow with pitch (Table 1, bottom row).
This is due to the reduced multiview coverage of the face area in high-pitch poses (80◦, 90◦).
This is also suggested by the error plot of the pitch sequence (bottom row, middle graph),
where error is less in the vicinity of 30◦. In this angle, the face is approximately frontoparallel
to the peripheral cameras. Roll is the weakest estimate, as its accuracy depends on the quality
of the unfolded texture and is more sensitive to image noise and poor registration of textures
from different views. As a general remark, the reported results demonstrate that head pose
estimation accuracy degrades gracefully to the loss of visual coverage.
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Figure 4: Top: Results for key frames of the dance (left 2) and standing sequences (right 2).
Bottom, left to right: results from experiments chair360, occlusions, hands and 2persons.

5.2 Estimation of head pose in human subjects
Datasets with human subjects capture indicative cases where head pose estimation can be
challenging (see Fig. 4). In these experiments, ψ = 1◦ (Is was 180× 360) and the ceiling
camera was excluded, due to hardware limitations, The dance sequence was acquired from a
different group and employed 8 cameras in similar arrangement, but including a ceiling view
(FOV = 53◦×42◦, resolution 780×582).

In the dance sequence, a person is dancing with head motion that includes significant yaw
and roll rotations. Brief face occlusions occur in frontal views. In the standing sequence, the
subject moves in space and the height of his head is varied about 0.8m, while undergoing
yaw, pitch, and roll rotation. In the chair360 sequence, the subject is sitting on a rotating
chair during four 360◦ yaw-rotations at 2 different pitch angles. Pose estimation results
evolve smoothly as the subject’s head faces towards all yaw-directions. In the occlusions
sequence, the subject rotates his head while severely occluding it from its facing camera with
his hands. The proposed method is capable of handling this challenging situation, as facial
texture mapping is still possible from lateral cameras. In the hands sequence, the subject
rotates his head while holding it with one and two hands. The goal of this experiment is to
test head localization in the challenging situation encountered when the visual hull of the
head is more complex than a simple protrusion. In the 2persons sequence, pose estimation
is performed individually for two subjects, demonstrating the capability of the method in
handling multi-head pose estimation. In the details, notice that the subject’s heads appear
partially for frontal views, further demonstrating the collection of facial texture from partial
face appearances.

6 Summary
A method that estimates all 3 components (yaw, pitch, roll) of 3D head pose from distant
views has been described and evaluated. The main contributions of this work are the fol-
lowing. First, the visual hull is employed to assist FDn in multiview environments. Second,
multiple views and visibility information are used to create an image that contains a frontal
view of the face, despite occlusions and partial face appearances. In distant-viewpoint imag-
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ing conditions and the presence of occlusions, this casts the proposed method more reliable
and accurate than methods that perform individual-view pose estimation and fuse the results.
Extensive experimental evaluation of the proposed method demonstrates that it is accurate,
robust and can cope with several challenging situations including distant head views, frontal
face occlusions, etc. Additionally, as a byproduct of this work, a distant viewpoint and
multicamera dataset annotated with ground truth was compiled and became available to the
computer vision community, to assist the process of evaluating 3D head pose estimation
methods.
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