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Abstract
This paper investigates the estimation of 3D head poses with a partial ellipsoid model.

To cope with large out-of-plane rotations and translation in depth, we extend conven-
tional head tracking with a single camera to a stereo-based framework. To achieve more
robust motion estimation (even under time-varying lighting conditions), we incorporate
illumination correction into the aforementioned framework. We approximate the face
image variations due to illumination changes as a linear combination of illumination
bases. Also, by computing the illumination bases online from the registered face images,
after estimating the 3D head poses, user-specific illumination bases can be obtained, and
therefore illumination-robust tracking without a prior learning process can be possible.
Furthermore, our unified stereo-based tracking is approximated as a linear least-squares
problem; a closed-form solution is then provided.

1 Introduction
An accurate estimation of 3D head position and orientation is important in many applica-
tions. 3D head-pose information can be used in human-computer interfaces, active telecom-
munication, virtual reality, and visual surveillance. In addition, a face image aligned in terms
of the recovered head motion would facilitate facial expression analysis and face recognition.

Thus, many approaches to recover 3D head motion have been proposed [2, 3, 7, 9]. One
is to use distinct image features. This approach works well when the features may be reliably
tracked over the image sequence. When this is not possible, using a 3D head model to track
the entire head region is more reliable. There have been several model-based techniques to
track a human head in 3D space.

Cascia et al. [3] developed a fast 3D head tracker that models a head as a texture-mapped
cylinder. The head pose of the input image is treated as a linear combination of a set of
24 warping templates (4 templates × 6 motion parameters) and a set of 10 illumination
templates that are obtained through a prior learning process. While simple and effective, use
of a small number of static templates appears unable to cope with fast and large out-of-plane
rotations and translation in depth.

Xiao et al. [9] presented a method to recover the full-motion (3 rotations and 3 transla-
tions) of the head using a cylindrical model. They used the iteratively re-weighted least-
squares technique to deal with non-rigid motion and occlusion. For tracking, the tem-
plates are updated dynamically to diminish the effects of self-occlusion and gradual lighting
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changes. However, since their method is not considering illumination correction explicitly,
their tracker is not likely to work well under time-varying illumination conditions.

The above two methods model a human head as a 3D cylinder. However, since the human
head is not a 3D cylinder, modeling inaccuracies between the actual and approximated head
models can be significant. This inherent modeling error may degrade the accuracy in motion
estimation.

Blanz and Vetter [2] proposed an algorithm to fit 2D face images with 3D Morphable
Models to estimate the head pose. Although the head pose can be estimated accurately, their
method suffers from the cost of 3D data acquisition and processing. The average processing
time for each frame is around 30 seconds-this is too slow for real-time applications.

All the methods described above are based on head pose estimation using only a single
camera. Generally, 3D head tracking with a single camera is not robust to fast and large
out-of-plane rotations and translation in depth.

With consideration of all of these issues, the coverage of this paper is as follows. As
in [1], we model the shape of a human head as a partial 3D ellipsoid-a reasonable approx-
imation to the actual head. Also, to complement the weakness of a single camera system,
we extend conventional head tracking with a single camera to a stereo-based framework.
Through the use of the extra information obtained from stereo images, coping with large
out-of-plane rotations and translation in depth is now tractable (or at least easier than with
a single camera). Furthermore, we incorporate illumination correction into this stereo-based
framework to allow for more robust motion estimation (even under time-varying illumination
conditions). We approximate the face image variations due to illumination changes as a lin-
ear combination of illumination bases. By computing the illumination bases online from the
registered face images, after estimating the 3D head pose, user-specific illumination bases
can be obtained, and therefore illumination-robust tracking without a prior learning process
can be possible.

2 3D Head Pose Estimation

Generally, image-based tracking is based on the brightness change constraint equation (BCCE)
[6]. The BCCE for image velocity estimation arises from the assumption that image inten-
sity does not change from one frame to the next. However, this assumption does not hold
true under real-world conditions. Tracking based on the minimization of the sum of squared
differences between the input and reference images is inherently susceptible to changes in il-
lumination. Hence, we need to consider the effect of ambient illumination changes for more
stable tracking even under such circumstances.

It ≈ Im,t + Ii,t . (1)

We assume that image intensity changes arise from both motion and illumination variations
as shown in Eq. (1). It is image gradient with respect to time t, and both Im,t and Ii,t are
the instantaneous image intensity changes due to motion and illumination variations respec-
tively.
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2.1 Motion
First, we assume static ambient illumination and thus that instantaneous image intensity
changes arise from variations in motion only. If then, the following BCCE holds true.

I(x,y, t) = I(x+∆x,y+∆y, t +∆t)≈ I(x,y, t)+
∂ I
∂x

∆x+
∂ I
∂y

∆y+
∂ I
∂ t

∆t. (2)

∂ I
∂x

vx +
∂ I
∂y

vy =−∂ Im

∂ t
, (3)

where vx = dx/dt and vy = dy/dt are the x- and y- components of the 2D image velocity v
of object motion after projection onto the image plane. In addition, we replace ∂ I/∂ t with
∂ Im/∂ t to denote that the intensity changes are due to motion variations.[

Ix Iy
][ vx

vy

]
=−Im,t , (4)

where Ix, Iy, and Im,t are the spatial and temporal derivatives of the image intensity computed
at location p = [x y]T respectively, where Im,t arises from the motion changes. However, we
are interested in solving for 3D velocities of object points, which are related to 3D motion
parameter estimation. Under the perspective projection camera model with focal length f ,
2D image velocities can be related to 3D object velocities by the following equations.

vx =
d
dt

(
f

X
Z

)
=
(

f
Z

VX −
x
Z

VZ

)
,vy =

d
dt

(
f
Y
Z

)
=
(

f
Z

VY −
y
Z

VZ

)
, (5)

where V = [VX VY VZ ]T is the 3D velocity of a point P = [X Y Z]T , corresponding to the im-
age point p, in the camera coordinate frame. The relationship between the two corresponding
velocities can be expressed in compact matrix form as shown below.

v =
[

vx
vy

]
=

1
Z

[
f 0 −x
0 f −y

]
V. (6)

Any rigid body motion can be expressed in terms of the instantaneous rotations and
translation of the object. For small inter-frame rotations, the rotation matrix can be linearly
approximated as (∆R≈ I+[∆r]×) by the angle-axis formula. I is a 3×3 identity matrix, and
[ ]× denotes a skew-symmetric matrix. Also, assuming that time interval ∆t is unity, temporal
derivatives of rotation and translation vectors can be approximated by finite differences ∆r,
∆t respectively.

V≈ R
[

I − [Po]×
][ ∆t

∆r

]
, (7)

where Po is a 3D sampled model point in the object reference frame corresponding to the
point P in the camera reference frame. R is the rotation matrix computed in the previous
frame between the camera and object coordinate frames. ∆r and ∆t are expressed in the
object coordinate frame. The above equation describes the relationship between the 3D
object velocity in the camera coordinate frame and inter-frame rigid body motion parameters
in the object coordinate frame. Substituting Eqs. (6) and (7) into Eq. (4), we obtain a simple
linear equation as shown below.

1
Z

[
f Ix f Iy −(xIx + yIy)

]
R
[

I − [Po]×
][ ∆t

∆r

]
=−Im,t . (8)
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The above single linear equation relates the spatial and temporal image intensity derivatives
to rigid body motion parameters under the perspective projection model at a single pixel.
Because Eq. (8) is linear with respect to motion parameters, we can combine it across n
pixels by stacking the equations in a matrix form. n is the number of model points that can
be seen from the camera under the current estimated head pose.

1
Z1

[
f Ix,1 f Iy,1 −(x1Ix,1 + y1Iy,1)

]
R
[

I − [Po,1]×
]

...
1

Zn

[
f Ix,n f Iy,n −(xnIx,n + ynIy,n)

]
R
[

I − [Po,n]×
]
[ ∆t

∆r

]
=

 −Im,t,1
...

−Im,t,n

 .

(9)
Let the left-hand side of Eq. (9) be M and the right-hand side be Im,t . Then, Eq. (9) can be
represented in compact matrix form as shown below.

Mααα = Im,t , ααα =
[

∆t
∆r

]
. (10)

2.2 Illumination
As mentioned in the beginning of Section 2, BCCE does not hold true under time-varying il-
lumination conditions. To handle face image variations due to changes in lighting conditions,
many methods have been proposed in the field of face recognition thus far. Among them, for
modeling illumination variations, subspace-based methods have often been used [4, 5, 10].
These kinds of methods model the face image variations due to illumination changes with
a low-dimensional linear subspace. They approximate the intensity changes due to illumi-
nation variations as a linear combination of illumination bases that are obtained from the
training samples of different people taken under a wide variety of lighting conditions. How-
ever, these kinds of subspace-based methods construct an illumination subspace from train-
ing images for different people, which includes not only illumination conditions but also
face identities. This subspace is not capable of representing the lighting conditions uniquely,
because the intrinsic (facial geometry and albedo) and the extrinsic (illumination conditions)
information are mixed. Otherwise, extremely large training sets would be needed. Also,
these methods need a prior learning process and thus suffer from the cost of training data
acquisition and processing.

Figure 1: Online illumination modeling.
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Hence, in this paper, by computing these illumination bases online from the registered
face images, after estimating the head poses, user-specific illumination bases can be ob-
tained, and therefore illumination-robust tracking without a prior learning process can be
possible as shown in Fig. 1. Therefore, we can approximate the intensity changes due to
illumination variations as a linear combination of illumination bases obtained through online
illumination modeling based on principal component analysis (PCA) [8] as shown below.

∂ Ii

∂ t
= Ii,t = Lβββ , (11)

where Ii,t is the instantaneous image intensity changes due to illumination variations. The
columns of the matrix L = [l1, · · · , lk] are the illumination bases obtained by PCA, and βββ is
the illumination coefficient vector.

2.3 Combined into Unified Stereo-Based Framework
First, BCCE for each left and right camera of a stereo-rig can be derived in the same way as
Eqs. (9) and (10) in the single camera system.

1
Zl,1

[
flIx,l,1 flIy,l,1 −

(
xl,1Ix,l,1 + yl,1Iy,l,1

) ]
Rl
[

I −
[
Po,l,1

]
×
]

...
1

Zl,nl

[
flIx,l,nl flIy,l,nl −

(
xl,nl Ix,l,nl + yl,nl Iy,l,nl

) ]
Rl
[

I −
[
Po,l,nl

]
×
]
= Ml ,


1

Zr,1

[
frIx,r,1 frIy,r,1 −(xr,1Ix,r,1 + yr,1Iy,r,1)

]
Rr
[

I − [Po,r,1]×
]

...
1

Zr,nr

[
frIx,r,nr frIy,r,nr −(xr,nr Ix,r,nr + yr,nr Iy,r,nr)

]
Rr
[

I − [Po,r,nr ]×
]
= Mr,

(12)

Im,t,l =

 −Im,t,l,1
...

−Im,t,l,nl

 , Im,t,r =

 −Im,t,r,1
...

−Im,t,r,nr

 , (13)

where nl and nr are the number of 3D sampled model points that can be seen from the left
and right cameras under the current estimated head pose respectively.

Mlααα = Im,t,l , Mrααα = Im,t,r. (14)

After combining the above equations into the stereo-based framework, we can obtain a sim-
ple linear equation with respect to inter-frame motion parameters ααα as shown below.[

Ml
Mr

]
ααα =

[
Im,t,l
Im,t,r

]
, ααα =

[
∆t
∆r

]
. (15)

In the same way as in Section 2.2, we can also model the instantaneous intensity changes
due to illumination variations as a linear combination of illumination bases for each left and
right face image as shown below.

Llβββ l = Ii,t,l , Lrβββ r = Ii,t,r, (16)
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where Ll =
[
ll,1, · · · , ll,k

]
and Lr =

[
lr,1, · · · , lr,k

]
are two sets of illumination bases for the

left and right face images respectively, which are obtained by removing the rows of L cor-
responding to invisible model points from each left and right camera under the current esti-
mated head pose. L is computed through online illumination modeling based on PCA from
both the left and right registered face images that had been stored until the previous frame.
k ≤ 2F − 1 is the number of illumination bases, and F is the number of frames. βββ l and βββ r
are the illumination coefficient vectors for the left and right face images respectively. Ii,t,l
and Ii,t,r are the instantaneous image intensity changes due to illumination variations for the
left and right face images respectively.

Because we assumed Eq. (1) in the beginning of Section 2, and because Eqs. (15) and
(16) are linear with respect to motion parameters ααα and illumination coefficient vectors βββ l
and βββ r respectively, we can combine them into a unified stereo-based framework as shown
below. [

Ml Ll 0
Mr 0 Lr

] ααα

βββ l
βββ r

=
[

It,l
It,r

]
. (17)

Let the left-hand side of Eq. (17) be A and the right-hand side be b. Then, the least-squares
solution of Eq. (17) can be easily obtained as shown below.

s∗ = argmin
s
‖As−b‖2 =

(
AT A

)−1 AT b. (18)

Due to the presence of noise, non-rigid motion, occlusion, and projection density, some
pixels in the face image may contribute less to motion estimation than others may. To account
for these errors, the pixels should be weighted by their contributions. If then, a weighted
least-squares solution can be obtained as shown below.

s∗ = argmin
s
‖WAs−Wb‖2 =

(
(WA)T (WA)

)−1
(WA)T (Wb), (19)

where W is a diagonal matrix whose components are pixel weights assigned according to
their contributions. Finally, motion parameters between the object and two camera coor-
dinate frames are updated by Eq. (20) and iterated until the estimates of the parameters
converge for both the left and right cameras.

Rl ← Rl∆R, Tl ← Rl∆t+Tl , Rr← Rr∆R, Tr← Rr∆t+Tr, (20)

where Rr and Tr are related to Rl and Tl through the stereo geometry as Rr = RT
s Rl and

Tr = RT
s (Tl−Ts).

3 Experimental Results
To verify the feasibility and applicability of our proposed 3D head-tracking framework, we
performed extensive experiments with two sets of challenging image sequences. Two ex-
periment sets of stereo image sequences were collected with a stereo vision module named
"Bumblebee". Ground truth data was simultaneously collected via a 3D magnetic sensor
named "Flock of Birds". All the stereo image sequences were digitized at 30 frames per
second at a resolution of 320×240. The magnetic sensor has a positional accuracy of 2.54
mm and rotational accuracy of 0.5◦. The first set consists of 20 stereo image sequences (two
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sequences for each of 10 subjects) taken under near-uniform illumination conditions. The
second set consists of 20 stereo image sequences (two sequences for each of 10 subjects)
taken under time-varying illumination. All the sequences in the two experiment sets are 300
frames long and are including free and large head motions. Note that all the measured ground
truth and the estimates of the visual tracking are expressed with respect to the initial object
coordinate frame for the comparison of estimation errors.

3.1 Experiment 1: Near-Uniform Illumination
The first experiment was designed to compare the performance of the proposed tracker with
that of a conventional head tracking with a single camera and also intended to evaluate the ef-
fects of online illumination correction. 20 stereo image sequences taken under near-uniform
illumination were used in this experiment. Left images of a stereo camera were used for the
single camera-based tracker. In this experiment, for modeling the illumination changes in
face images, we used 10 illumination bases. They were obtained through online illumination
modeling based on PCA from both the left and right registered face images that had been
stored until the previous frame.

Fig. 2 presents typical tracking results on one of the test sequences from the first exper-
iment set. The estimations for 3D motion on this sequence are displayed in Fig. 3. This
sequence involves large pitch, yaw, and roll motions up to 40◦, 70◦, and 35◦ respectively.

"Single" denotes conventional single camera-based tracking defined by Eq. (10). "Stereo"
represents stereo-based tracking described by Eq. (15). This is a simple extension of "Sin-
gle" to a stereo framework, but not including illumination correction. "Unified stereo" means
our proposed unified stereo-based tracking including online illumination correction.

Average errors of 3D motion estimation on 20 image sequences are shown in Table 1. As
can be seen in these results, single camera-based tracking is not robust to large out-of-plane
rotations (especially for pitch and yaw) and translation in depth direction. A simple extension
to stereo-based tracking improves the performance of the tracker to some degree, but there
still exist significant tracking errors. On the other hand, even though there are no changes
in ambient illumination, motion estimation is greatly improved through unified stereo-based
tracking including online illumination correction compared to stereo-based tracking. This
is because self-shading is likely to occur in face images even under uniform illumination,
depending on the current head pose. Hence, our proposed unified stereo-based tracking can
provide robust motion estimation by reducing the negative effects of self-shading.

3.2 Experiment 2: Time-Varying Illumination
The second experiment was set up to evaluate the performance of the proposed tracker under
time-varying illumination conditions. In this experiment, we also used 10 illumination bases
obtained through online illumination modeling as in Experiment 1.

Fig. 4 presents typical tracking results on one of the test sequences from the second
experiment set. The estimations for 3D head motion on this sequence are displayed in Fig.
5. Whenever there are changes in illumination, significant tracking errors occur in single and
stereo tracking. On the other hand, the proposed unified stereo-based tracker shows stable
tracking even under time-varying illumination.

Average errors of 3D motion estimation on 20 image sequences are shown in Table 2. As
can be seen in Table 2, There exist much larger tracking errors in single and stereo tracking
than those in Experiment 1 because they cannot cope with illumination changes. On the



8 AN, CHUNG: UNIFIED STEREO-BASED 3D HEAD TRACKING USING OIM

Figure 2: Typical tracking results on one of the sequences taken under near-uniform illumi-
nation. Frames 1, 116, 138, 210, and 251 are shown from left to right. Row 1: single; Row
2: stereo; Row 3: unified stereo.
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Figure 3: Comparison between the ground truth and the estimated head poses on the se-
quence corresponding to Fig. 2. Green line: single; Blue line: stereo; Red line: unified
stereo; Black line: the ground truth.

T(x)[mm] T(y)[mm] T(z)[mm] R(x)[◦] R(y)[◦] R(z)[◦]
Sinlge 11.27 9.65 66.61 5.46 6.08 2.54
Stereo 8.24 6.75 38.62 3.92 4.95 2.27
Unified stereo 5.83 4.30 12.19 2.50 3.62 1.80

Table 1: Motion estimation errors on 20 image sequences taken under near-uniform illumi-
nation conditions.
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Figure 4: Typical tracking results on one of the sequences taken under time-varying illumi-
nation. Frames 1, 149, 181, 245, and 300 are shown from left to right. Row 1: single; Row
2: stereo; Row 3: unified stereo.

50 100 150 200 250 300
−500

−400

−300

−200

−100

0

100

200

300

400
Trans.X

[Frame]

[m
m

]

50 100 150 200 250 300
−500

−400

−300

−200

−100

0

100

200

300

400
Trans.Y

[Frame]

[m
m

]

50 100 150 200 250 300
−500

−400

−300

−200

−100

0

100

200

300

400
Trans.Z

[Frame]

[m
m

]

50 100 150 200 250 300
−60

−40

−20

0

20

40

60
Pitch

[Frame]

[D
e

g
re

e
]

50 100 150 200 250 300
−60

−40

−20

0

20

40

60
Yaw

[Frame]

[D
e

g
re

e
]

50 100 150 200 250 300
−60

−40

−20

0

20

40

60
Roll

[Frame]

[D
e

g
re

e
]

Figure 5: Comparison between the ground truth and the estimated head poses on the se-
quence corresponding to Fig. 4. Green line: single; Blue line: stereo; Red line: unified
stereo; Black line: the ground truth.

T(x)[mm] T(y)[mm] T(z)[mm] R(x)[◦] R(y)[◦] R(z)[◦]
Sinlge 18.85 16.02 112.37 9.91 18.89 6.86
Stereo 15.44 10.86 52.68 7.07 14.60 6.42
Unified stereo 5.73 4.75 14.91 3.32 3.61 2.05

Table 2: Motion estimation errors on 20 image sequences taken under time-varying illumi-
nation conditions.
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other hand, our unified stereo-based tracker shows almost similar performance of motion
estimation to that evaluated in Experiment 1 even under time-varying illumination, thanks to
the online illumination correction term.

4 Conclusion
In this paper, we presented a long-term stable and robust technique for 3D head tracking even
in the presence of varying illumination conditions. We extended conventional head tracking
with a single camera to a stereo-based framework. This partially enables us to cope with
large out-of-plane rotations and translation in depth. In addition, we incorporated illumi-
nation correction into this stereo-based framework for more robust motion estimation. We
approximated the intensity changes in face images due to illumination variations as a linear
combination of illumination bases. Also, by computing these illumination bases online from
the registered face images, after estimating the head pose, user-specific illumination bases
can be obtained, and finally illumination-robust tracking without a prior learning process can
be possible. Extensive experiments using the ground truth have shown that the proposed uni-
fied stereo-based tracking method is able to cope with fast and large out-of-plane rotations
and translation in depth. This is true even under time-varying illumination conditions.
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