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An accurate estimation of 3D head position and orientation is important
in many applications. Thus, many approaches to recover 3D head motion
have been proposed [2, 4, 6]. However, all the methods described above
are based on head pose estimation using only a single camera. Generally,
3D head tracking with a single camera is not robust to fast and large out-
of-plane rotations and translation in depth. Also, most of the existing
approaches are not considering illumination correction explicitly.

With consideration of all of these issues, the coverage of this paper
is as follows. To complement the weakness of a single camera system,
we extend conventional head tracking with a single camera to a stereo-
based framework. Through the use of the extra information obtained from
stereo images, coping with large out-of-plane rotations and translation in
depth is now tractable (or at least easier than with a single camera). Fur-
thermore, we incorporate illumination correction into this stereo-based
framework to allow for more robust motion estimation (even under time-
varying illumination conditions). We approximate the face image varia-
tions due to illumination changes as a linear combination of illumination
bases. Also, by computing the illumination bases online from the regis-
tered face images, after estimating the 3D head pose, user-specific illumi-
nation bases can be obtained, and therefore illumination-robust tracking
without a prior learning process can be possible.

Generally, image-based tracking is based on the brightness change
constraint equation (BCCE) [3]. However, this assumption does not hold
true under real-world conditions. Tracking based on the minimization of
the sum of squared differences between the input and reference images is
inherently susceptible to changes in illumination.

Hence, we assume that image intensity changes arise from both mo-
tion and illumination variations as shown in Eq. (1).

It ≈ Im,t + Ii,t , (1)

where It is image gradient with respect to time t, and both Im,t and Ii,t are
the instantaneous image intensity changes due to motion and illumination
variations respectively.

First, we assume static ambient illumination and thus that instanta-
neous image intensity changes arise from variations in motion only. If
then, the following BCCE holds true as in [1].

Mααα = Im,t , ααα = [∆t ∆r]T , (2)
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where Ix, Iy, and Im,t are the spatial and temporal derivatives of the image
intensity computed at location p = [x y]T respectively, where Im,t arises
from the motion changes. I is a 3× 3 identity matrix, and [ ]× denotes a
skew-symmetric matrix. Po is a 3D sampled model point in the object ref-
erence frame corresponding to the point p, and n is the number of model
points that can be seen from the camera under the current estimated head
pose. R is the rotation matrix computed in the previous frame between the
camera and object coordinate frames. The above linear equation relates
the spatial and temporal image intensity derivatives to inter-frame rigid
body motion parameters (∆t, ∆r) under the perspective projection model
with focal length f .

As mentioned above, BCCE does not hold true under time-varying il-
lumination conditions. To handle face image variations due to changes in
lighting conditions, we model them with a low-dimensional illumination
subspace obtained through PCA [5]. Also, by computing these illumi-
nation bases online from the registered face images, after estimating the

Figure 1: Online illumination modeling.

head poses, user-specific illumination bases can be obtained, and there-
fore illumination-robust tracking without a prior learning process can be
possible as shown in Fig. 1.

Ii,t = Lβββ , (5)

where the columns of the matrix L = [l1, · · · , lk] are the illumination bases
obtained by PCA, and βββ is the illumination coefficient vector. Ii,t is the
instantaneous image intensity changes due to illumination variations.

Finally, we can simply extend Eqs. (2) and (5) to stereo-based frame-
works.

Mlααα = Im,t,l , Mrααα = Im,t,r. (6)

Llβββ l = Ii,t,l , Lrβββ r = Ii,t,r. (7)

Because we assumed Eq. (1) in the beginning, and because Eqs. (6)
and (7) are linear with respect to motion parameters ααα and illumination
coefficient vectors βββ l and βββ r respectively, we can combine them into a
unified stereo-based framework as shown below.[
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Let the left-hand side of Eq. (8) be A and the right-hand side be b. Due to
the presence of noise, non-rigid motion, occlusion, and projection density,
some pixels in the face image may contribute less to motion estimation
than others may. If then, a weighted least-squares solution of Eq. (8) can
be obtained as shown below.

s∗ = argmin
s
‖WAs−Wb‖2 =

(
(WA)T (WA)

)−1
(WA)T (Wb), (9)

where W is a diagonal matrix whose components are pixel weights as-
signed according to their contributions.

[1] Kwang Ho An and Myung Jin Chung. 3d head tracking and pose-
robust 2d texture map-based face recognition using a simple ellipsoid
model. In Proc. IROS, pages 307–312, Sept. 2008.

[2] Volker Blanz and Thomas Vetter. Face recognition based on fitting a
3d morphable model. IEEE T-PAMI, 25(9):1063–1074, Sept. 2003.

[3] Berthold K. P. Horn and E. J. Weldon Jr. Direct methods for recover-
ing motion. IJCV, 2(1):51–76, 1988.

[4] Marco La Cascia, Stan Sclaroff, and Vassilis Athitsos. Fast, reli-
able head tracking under varying illumination: an approach based on
registration of texture-mapped 3d models. IEEE T-PAMI, 22(4):322–
336, Apr. 2000.

[5] Matthew Turk and Alex Pentland. Eigenfaces for recognition. J. of
Cognitive Neuroscience, 3(1):71–86, 1991.

[6] Jing Xiao, Takeo Kanade, and Jeffrey F. Cohn. Robust full-motion re-
covery of head by dynamic templates and re-registration techniques.
In Proc. AFGR, pages 156–162, May 2002.


