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Abstract

This paper addresses the basic problem of recovering theufce of an object
that is observed in motion by a single camera and under & &tatiunknown lighting
condition. We propose a method to establish pixelwise spordence between input
images by way of depth search by investigating optimal gslisféntensities rather than
employing all the relevant pixel values. The thrust of ogoaithm is that it is capable of
dealing with specularities which appear on the top of shdariance that is caused due
to object motion. This is in terms of both stages of findingrspaoint correspondence
and dense depth search. We also propose that a linearisgeé imaais can be directly
computed by the procudure of finding the correspondencell\gérate the performance
of the theoretical propositions using images of real okject

1 Introduction

Recovering the 3D surface of an object from shaded imagebdms long investigated in
computer vision, based on different assumptions on refieetmodels and illumination con-
ditions [8]. Photometric stered?[l] uses multiple images of a static object taken under dif
ferent illumination conditions in order to remove the amiiig inherent in a single image.
As an alternative, a technique of using the shading varidnedo object motion, rather than
varying illumination, has been recently studied for the sgarpose and attracts attention,
see for examplell0, 11, 12, 16, 22]. In this paper, we also concern ourselves with this tech
nique because it allows us to stay with the simplest possiélep for obtaining the shape
of an object. The basic scheme of the technique is to empmjréimework of multi-view
stereo, which first requires correspondence of severallsgooints to recover the extrinsic
camera parameters, and then to exploit the shading var@umeeo object pose for dense
matching. Among others the recent work 6] provides a state-of-the-art solution for
a final surface which they compute by further incorporatimg technique of photometric
stereo.

Notwithstanding the recent advances, one of the limitatiofnthe previous techniques
is concerned with the object surface, which is commonly meslito have Lambertian re-
flectance with a certain number of distinctive feature pojhi]. That s, if the surface takes
on specularities it will be a problem for the first stage toumately compute point correspon-
dence. At the second stage, in which the linear subspac&ramm$15] is imposed, specular
reflections will be even more problematic as they producelimear highlights 9, 14].
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The motivation of this paper is to overcome such a limitatibeach stage in the scheme.
This paper is most relevant to the work @ and [12] in that we also investigate the linear
subspace constraint. However, it differs from them in thallelnge that we propose tech-
nigues to deal with specular components both in featureespondence and dense depth
search. Moreover, as a direct application we show that weacqguire a linear image ba-
sis of target object by using the consequence of dense matelmd removal of specular
components.

1.1 Overview

Our assumption in the following is that the target objecliisninated by a distant unknown
light source. The surface may or may not be textured, anddsoapmated by a Lambertian
component plus a specular component but without shadow.

Point correspondence We first compute sparse feature correspondence acrossphe in
images which we use for estimating light source parametevgedl as external camera pa-
rameters. In order to eliminate the spurious matching dispézularities at this stage, we
compute outliers by minimising the LMedS error in terms obfiimetric measures and ex-
clude them before computing the camera parameters andsbginte parameters.

Dense depth search We propose to recover the shape of an object by a dense deptihse
while evaluating the correct matching with the linear suwrgpconstraint as investigated in
[10, 12]. In order to deal with specularities, in our case, we chdosemploy a minimum
of five images as inputs. This is because we first need thregeispaf no specularities
are present, to estimate the surface normal (up to an anigiia hypothesised surface
location as well as the fourth image to verify that the sufaweed passes through that
point. The fifth image is to detect the existence of a speitylay checking the consistency
with the other four inputs.

This detection of specularity is inspired by the principfelesource photometric stereo
[1, 3, 17]. That is, among five or more input images we interchangeatilige an optimal
intensity subset consisting of four projected image intensities to find thstheatches. The
strategy is motivated by the fact that the specularitiegetran the surface thanks to the ob-
ject motion and therefore on the assumption that they areonenapping.

Linearising the basis We also show that a linear image basis of the target objectrhes
available as a consequence of the dense matching despipehelarities. Although a ba-
sis can be generated by re-aligning each pixel in the inpagés, non-linear artifact would
then appear in the by-product of simple re-alignment. Nixedess, we factor out the spec-
ular components as residuals with respect to a linear caatibmof an intensity subset and
compute linearised pixel intensities, which directly &sieis a linearised image basis. Linear
image bases are known to be useful for example to syntheiseedt appearances of an
object as learning data for the problem of object recognifio 13].

In Section 2 we first introduce the procedure of computinigtlgpurce parameters using
the sparse point correspondence across input imagesos8agbiroposes a core method for
dense depth search in the presence of specular reflectidghs surface, followed by Section
4 which describes how we can apply the result to generatearised image basis. We show
the results of our experiments with real objects in SectioBéction 6 concludes the paper.



MAKI AND CIPOLLA: OBTAINING THE SHAPE OF A MOVING OBJECT 3
2 Computing Light Source Parameters

For estimating camera parameters in the camera projectairixnP, we solve the well
known affine structure from motion problem using SVDg|. We then need a measure-
ment matrix containing the coordinates of some number ofesponding sample points
throughout input images. This is generally consideredipteswith standard techniques for
matching cornersd] and removing outliers unless the artifacts due to speitigsi(or some
intensities not fulfilling the assumed conditions, e.g.f-sehdowing) distort the solution.
Accurate point correspondences under appearance chaalge isnportant because the in-
tensities of the corresponding pixels parametrise the Bglirce parameters, and thereby
linear subspace constraint, which we will utilise for dedsgth search at the subsequent
stage.

2.1 Thelight Source Matrix

Let us consider the intensity(j) of thei" point on the surface of a moving object projected
into the jt" image. Given the correspondences ficsample points througn images, we
record the corresponding pixel intensitig$j), in ann x mmatrix as.# = (l;(j)), which we
call theillumination matrix.

For Lambertian surface, we can exprés$) in terms of the image formation equation
process so thdf(j) = max(n; "I(j),0). The 3-vectom; is defined at the first frame to be
the product of the albedo with the inward facing unit nornmltheit™ point whereas the
3-vectorl(j) is the product of the strength of the light source with thet wettor for its
direction. Note that

() =RT(J) (1), &

where the %3 matrix, R(j), is the rotation of the object from the first frafavhich is
taken to be the reference, to ti@ frame. Multiplication ofR" (j) represents virtually
inverse rotation of the light source.

Then, we can form a matrix equation,

7 =NL )

whereN is ann x 3 matrix containing the rows;", andL is a 3x m matrix containing the
columnd (). We call matrix_ (as well ad that appears in the sequibht source matrix for
convenience of explanation. The familiar form for solutlynsingular value decomposition
to obtain a rank 3 approximation to the matr#is such that

7 =NL=(NA1)(AL) . (3)

As is well known, the solution is unique up to an arbitraryertible 3x<3 transformatiorA
which transform:t into L by L = AL, or for its each columii(j) into I(j) by I(j) = Al(j)
wherel(j) denotes a column df.

2.2 Computing The Light Source Matrix by LMedS

As stated above, we estimate the light source maltrixased on the sample point that are
in correspondence. However, computing point corresporeean a moving object is not

1The rotation matrix is computed by solving for the structircen motion problem.
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so trivial when the surface is with specular component theyt cause spurious matching. A
known solution to this problem in the literature would be bynoving outliers in terms of
geometric errorsi9).

For an accurate computation of light source matktixye carry this out by taking the
photometric measures into accod order to ensure that the artifacts which are caused by
specularities do not distort the correct solution. In pgcagtwe choose to employ the LMedS
method without a particular need of a threshold. Namelypshtg a set of three sampled
rows in the illumination matrix,#3, we can compute a putative light source matrix which we
call L. We then evaluate the consistency of each remaining roweaiflttmination matrix,
e.g.li = {1i(1),1i(2),...,li(m)}, with L3 by computing the residual error

£ =|li— L3 (LsLd) L3, 4)

and record the median &f. Note that the arbitrary transformation matfwill disappear
by substitutingl; = A~1L3 to this definition and therefore the putative matkix can be
directly used here. Repeating this procedure while pickipgnany different sample sets
of three rows of illumination matrix, we select a combinatif three rows (points) which
minimises the median of the residual errors and computéghedource matrix accordingly
with the inliers.

3 Dense Depth Search for a Specular Surface

For dense surface reconstruction we search for the deptietoliject at each pixel in a
reference image. We essentially need a minimum of three mpte images (and thus four
in total) to impose the three-dimensional linear subspacstcaint as suggested ih(, 12].
Choosing the reference image to be the canonical (as seé}),ing search for the depth,
Z, while comparing the set of image intensiti&g, Pj (X, Z))|j=1,... mm>4, at the coordinates
determined by in the first canonical image, guess of de@ttand the projection matrik,

in each frame. The task is now to impose the geotensity ains{ii?), i.e., to evaluate the
consistency between the referred set of intensities.

The linear subspace constrdimtolates in the presence of non-linear specular reflection.
Thus, we present an algorithm to deal with specularitiesdgirey extra input images for
detecting the existence of a specularity when evaluatiagtimsistency. That is, we choose
to employ five (or more) images as inputs, and interchangeabise an optimalntensity
subset consisting of four projected image intensities to find thetleatches. The idea can
be well explained as an analogue to 4-source photometriecsfé] and thus we brief the
notion of it before describing our algorithm.

Given the estimate of depth at each pixel in a reference in@dense depth map can be
computed by updating with any well researched algorithmef@ample, by minimising the
multiview constraint using graphcuts(.

3.1 The4-source Photometric Stereo

In the conventional 3-source photometric stereo, if a pointhe surface is subject to specu-
lar reflection from one of the three sources, the computehabrector will be incorrect due

2Light source estimation is also viewed as robust model ditiinmultiview reconstruction of textureless object
[20] where the inliers are the contour generator points of Visul.
3|t is available for regions with or without texture.
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to an elevated intensity value. By adding a fourth sourcbedomes possible to compute
a set of four surface vectors based on the four possible cwtibis of three light sources.
This redundancy allows tagging and removal of the specolarce B]. Namely, for a Lam-
bertian surface the four albedos would be identical, bueasiarity in one light source will
make three of the four albedos higher while the albedo coetpwithout using that light
source remains low. As a method to eliminate specular sfféxleman and Jain define a
relative deviation in the surface albeRg,, at each point on the surface,

Ruev =

— Jz IRy~ Rocan] ©)

whereR; is each estimated albedo aRglin is the smallest of these. Then, they regRsd,
greater than a threshold as indication of a specular commpaied choose the combination
of the three intensity values which have the smallest allledoomputing the surface nor-
mal. An improved scheme to determine a statistically moranmirgful threshold is also
proposed using the variance of the camera’s intensity respf7].

3.2 Theb5-source Algorithm for Dense Depth Search

Analogously to the 4-source photometric stereo, we add laififiage for tagging and re-
moval of specular source. That is, by adding a fifth sourcecavepute a set of five surface
vectorsfi (although it is determined only up to an invertiblex33 transform), at each guess
of depth based on the five possible combinations of four &irlight sources. Then in-
referred set of image intensities We define an mtensﬁyeﬂﬂhys selectively skipping such
I (k; (x,2)) that is the most likely to be specular among the five differetgnsities. We

denote such an intensity subsetgs; P (x, Z))|J 1,..m j+k- Forthis selection to be possible,
we compute five different linear subspaces in advance.

Computing the light source matrices (multiple candidates) Let us consider that five im-
ages are given as input so timat= 5, and first assume that specular reflection occurs most
in either of them according to the object motion. Givenrax m illumination matrix as
# = (li(j)), we define five differerm x 4 illumination submatrices, .% k-1, 5, by skipping
thek™ column, | (k). We then recall equatiohand compute a rank 3 approximation to eact
Y, so that

Jie=Nelg = (NA Y (ALp), (6)

It should be noted that we apply the LMedS method introduneBiction2.2 to compute
each candidate of light source matrix.

Selection of optimal intensity subset Given multiple representations of Iinear subspaces

VeCtOI‘SI’tk as
Ap [ket,...5 = (35 Py (%, 2)) L (L)t @)

Using those estimates of surface vectors, as was the case4ndource photometric stereo,
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we derive a relative deviation in the surface albgép|, such that

1 5
Algey = =—— A —|A 2 8
oo = gy 3,1~ Al ®)

where|fi|mean iS the mean value dfi| and|fi|min is the smallest of these, respectively. We
then select the combination of the four intensity valueschligiive the smallest estimate of
albedo.

Computing the correspondence If a specularity is judged to be occurring whier- h, we
pickI(j) from Lj to compute the estimated values of the intensities as,

(3P (%,2))|j=1.. 520 = ALI(]) . (9)

We then define the error function to evaluate the set of intiess( j; Pj(x, Z)) without being
influenced by the suspected specularity as

5
e(x,Z) = Z (1(5;Pj(x,2)) — I (j; Pj(x,2))? . (10)
j=1j#h

We measure the errog, at regular small intervals of deptH, It is clear that as the depth
parameter is varied the location of the corresponding paiméach image will trace out the
corresponding epipolar line in each image. When the deptbriect we expect the error to
approach zero and we store a primary depth hypothesis timatnises the erroe(x,Z) as
well as several other depth candidates wlegxeZ) is locally minimised as has been studied
in [2]. We then choose such candidate of deptthat is most consistent with the primary
depth hypotheses in the surrounding pixels.

4 Linearising thelmage Basis

Based on the pixelwise correspondence between input inefgas object in motion, we
can generate images of the object as if they were capturedigeatical pose as seen in the
reference frame but under varying lighting. This is donedsgligning the pixels in the input
images. We can either employ a set of three images from thergia images directly as an
image basis, or apply the PCA to the re-aligned images amad éororthogonal basis by the
three eigenvectors corresponding to the highest eigeesdld]. In either case, however,
non-linear artifacts will naturally appear in the resuitimasis as long as specular reflections
are present in the inputimages even when the corresponsaam®irately computed despite
the specularities. Since the linear functionality of theibavill then deteriorate, we wish to
replace the specularities with some values that lineangetp each other, i.e., linearise the
appearance of image basis.

Let us consider the case tlrmimages are given as input and that for simplicity we should
typically replace an intensity(h), that is most likely to be specular among a corresponding
intensity set) (j)|j=1,...m- For each corresponding set of pixels in a set of re-aligmatjes,

we have a tag of the specular source such thaft'thelement was removed in the process of
depth search, and the utilised intensity subset was

IR(1 Py (%, 2))lj=1...mj#h - (11)
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That is, we have used the intensity subset excludindthelement for computing the cor-
respondence at the correct depth. Since it should be censigith the corresponding34
light source matrix[g, containing the columri$j)|j:1 lllll me1 (excludingT(h)), we can esti-
mate a linearised value dth) by

~ -

[(h)=fgl(h) , (12)

whereﬁ% is computed by equation wherek = h. We can then factor out the specular

component of (h) as a residual with respect to the linear estimate by
[(h)—1I(h) . (13)

The residual should be zero when no specularity is presesetn ghe re-alignment is accu-
rate. If some residual is observed, we can linearise thesponding set of pixels by directly
replacingl (h) with I(h). This operation at each pixel in a set of re-aligned imagesvalus
to linearise the entire image basis.

5 Experiments

We illustrate the performance of the proposed scheme ugiewg examples of real objects: a
human face and a water pitcher, whose surfaces are congpotltambertian and specular
components. See Figufie Each of them shows three input images out of five that wer
used, respectively. They were captured while the objece pasies under a point light
source whose position is close to the viewing direction,unknown. Ambient light was
also present in capturing the human face. As can be obsemesadk or strong specularities
appear on different parts of surfaces according to the bpjese relative to the light source.
Since a light source is placed beside the camera, in eacteirpagts of the surface where
the orientation is close to the direction toward the camemd to take on specular reflection.
For example, the face in the leftmost image takes on relgitsteong specular components
in the left part of forehead and cheek according to the faetion.

Figurel also include resulting depth maps of water pitcher and huiaes, computed
for the reference inputimages in the midst, respectivehe lighter, the closer to the camera.
In both examples we tracked about 15 sample points for qooretence but a few of them
were removed by the LMedS method with the photometric measkor the dense depth
search in each case, we employed & 15 template to suppress the error arising from imag
noise (but not to over-smooth the resulting surface). Thetdeaps essentially represent
the accuracy of the computed dense correspondence betinegptit images, and we also
display the reconstructed surfaces viewed from differémtctions. The surfaces are well
recovered considering the fact that only five images are,@etuninfluenced by the partial
specularities. The results on the upper part of the wateheitis erroneous because that par
is not visible throughout all the input images and is alsdwsttong inter-reflections.

Figure 2 shows the reference image of water pitcher (same imageghatthe midst
of Figure 2 (left-top)) with annotations of two sample ldoas, (a)x = (160,100) and (b)

X = (200,100) and illustrate the errors at hypothesised depths. Indiceb’ is an example
point that takes on a specular reflection as the water pitciiates (see the leftmost-top
image of Figure 2) whereas 'a’ is a point that does not actes$ive input images. It should
be noted that those two points are sampled at differentitotabut at an identical distance
from the camera and therefore their depths should be estihidéntically.
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Figure 1. Left: Three examples out of five input images of aewaitcher (top) and a
human face (bottom) captured in different poses under & fight source whose direction
is unknown, respectively. Right: A depth map estimatedrrafg the input image in the
midst (the lighter, the closer) and the recovered surfatie avid without texture shown from
different directions.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

S~
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Depth: 2

(a) The erroe(x,Z) at’a’. (b) The errore(x,Z) at’b’.

Figure 2: Left: The 32@320 reference image of water pitcher example (the same imsge
in the midst of Figure 2 (left)). Annotated as 'a’ and 'b’ aveotsample locations for detailed
analyses. Right: The erroegx,Z) with respect to hypothesised depts,are plotted for
two sampled points. In both examples, the solid line indisdahe errors by the proposed
method and the dashed line by a conventional methad [

In Figure2 (a), with the solid line we plot the errecomputed by equatiohO at different
hypothesised depths for the sample point 'a’. Smaller \&hfeZ correspond to smaller
(closer) distances to the viewer. The error is minimised at24 and it is consistent with
the true depth although other local minimum are also preséfith the dashed line, for a
comparison, we superimpose the e@omputed by a conventional methdd’] but using
all the five input images. The minimum is found at the sameemrdepth, which is as
expected since point 'a’ does not take on specular refleeioass the input images. The
error, e, obtained by the proposed method turned out to be genemllgrithan those by
the conventional ones. Recalling that it is defined in terfngrey scale values, we can
explain the reason by the fact that (the square of) the higivesl value among the referred
set tends to be excluded from the computation in equatidnAnalogously, Figure? (b)
shows the erroe computed for point 'b’. In this case, the errors by the two moels are not
minimised at the same depth. The result by the conventioatiiod is obviously influenced
by a specularity and the minimum error is realised at a shifteong depth. However, we
can observe that the proposed method still minimises tloe atithe same correct depth as
found for point 'a’ (the two sample points are at identicatdnce).
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Figure3 (left) shows re-aligned images of the water pitcher (topjr&sponding to the
three input images shown in Figutdleft) in the same order. Each of them is also separate
to specular components (middle) and a linearised image r&teoving the residuals (bot-
tom). It can be observed that residuals are extracted ierdifit parts of the surface according
to the object motion. It is natural because the orientatfdh@object changes in such a way
that it spans the 3D space so that specular regions trawaldingly. Comparing the top and
bottom rows of the figure, it can be noticed that the stronguslagity that is present due to
the round shape of the object at a close point (viewed froncdineera) has been removed in
the linearised images. Analogously, Fig@ré&ight) shows re-aligned images of the human
face, each of which is separated to specular componenteagdhiduals and a linearised
image after removing them. Notice that some of the speculaponents, e.g. in the above
mentioned face image are identified as residuals, and thenieéd in the linearised image.

Figure 3: Top: Re-aligned images generated from the cgdrabf pitcher images (left) and
face images (right). Middle: Extracted specular compaonémisiduals, stressed by factor 5
for display reason). Bottom: Linearised images after reimgpthe specular components.

6 Summary and Future Work

We have addressed the problem of recovering the surface of/agobject using the shad-
ing variance due to object motion. In particular, we havdtdeith objects with specular sur-
faces for which it was previously difficult to find accuratamaorrespondence and search
for dense surface. The key idea for dense point matchinguseécan optimal subset of in-
tensities that is the least influenced by specular reflestido our knowledge it is one of the
few trials of finding correspondence in the presence of dpétias on the top of intensity
variance due to object motion. We have also shown that it $sipte to linearise the input
images by directly applying our results. It should be s&ddhat our experimental results
were obtained using as few as five input images, with the fifib to deal with a possible
specularity. We are interested in extending our algorith@dcommodate a large number of
input images so that it can deal with a more significant sgeitids. Other interesting po-
tential directions for future work include combinationghwviifferent approaches for coping
with highlights such as using silhouette ca€][or shadowsT].
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