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Abstract

This paper addresses the basic problem of recovering the 3D surface of an object
that is observed in motion by a single camera and under a static but unknown lighting
condition. We propose a method to establish pixelwise correspondence between input
images by way of depth search by investigating optimal subsets of intensities rather than
employing all the relevant pixel values. The thrust of our algorithm is that it is capable of
dealing with specularities which appear on the top of shading variance that is caused due
to object motion. This is in terms of both stages of finding sparse point correspondence
and dense depth search. We also propose that a linearised image basis can be directly
computed by the procudure of finding the correspondence. We illustrate the performance
of the theoretical propositions using images of real objects.

1 Introduction

Recovering the 3D surface of an object from shaded images hasbeen long investigated in
computer vision, based on different assumptions on reflectance models and illumination con-
ditions [8]. Photometric stereo [21] uses multiple images of a static object taken under dif-
ferent illumination conditions in order to remove the ambiguity inherent in a single image.
As an alternative, a technique of using the shading variancedue to object motion, rather than
varying illumination, has been recently studied for the same purpose and attracts attention,
see for example [10, 11, 12, 16, 22]. In this paper, we also concern ourselves with this tech-
nique because it allows us to stay with the simplest possiblesetup for obtaining the shape
of an object. The basic scheme of the technique is to employ the framework of multi-view
stereo, which first requires correspondence of several sample points to recover the extrinsic
camera parameters, and then to exploit the shading variancedue to object pose for dense
matching. Among others the recent work of [10] provides a state-of-the-art solution for
a final surface which they compute by further incorporating the technique of photometric
stereo.

Notwithstanding the recent advances, one of the limitations of the previous techniques
is concerned with the object surface, which is commonly assumed to have Lambertian re-
flectance with a certain number of distinctive feature points [11]. That is, if the surface takes
on specularities it will be a problem for the first stage to accurately compute point correspon-
dence. At the second stage, in which the linear subspace constraint [15] is imposed, specular
reflections will be even more problematic as they produce non-linear highlights [9, 14].
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The motivation of this paper is to overcome such a limitationat each stage in the scheme.
This paper is most relevant to the work of [10] and [12] in that we also investigate the linear
subspace constraint. However, it differs from them in the challenge that we propose tech-
niques to deal with specular components both in feature correspondence and dense depth
search. Moreover, as a direct application we show that we canacquire a linear image ba-
sis of target object by using the consequence of dense matching and removal of specular
components.

1.1 Overview

Our assumption in the following is that the target object is illuminated by a distant unknown
light source. The surface may or may not be textured, and is approximated by a Lambertian
component plus a specular component but without shadow.

Point correspondence We first compute sparse feature correspondence across the input
images which we use for estimating light source parameters as well as external camera pa-
rameters. In order to eliminate the spurious matching due tospecularities at this stage, we
compute outliers by minimising the LMedS error in terms of photometric measures and ex-
clude them before computing the camera parameters and lightsource parameters.

Dense depth search We propose to recover the shape of an object by a dense depth search
while evaluating the correct matching with the linear subspace constraint as investigated in
[10, 12]. In order to deal with specularities, in our case, we chooseto employ a minimum
of five images as inputs. This is because we first need three images, if no specularities
are present, to estimate the surface normal (up to an ambiguity) at a hypothesised surface
location as well as the fourth image to verify that the surface indeed passes through that
point. The fifth image is to detect the existence of a specularity by checking the consistency
with the other four inputs.

This detection of specularity is inspired by the principle of 4-source photometric stereo
[1, 3, 17]. That is, among five or more input images we interchangeablyutilise an optimal
intensity subset consisting of four projected image intensities to find the best matches. The
strategy is motivated by the fact that the specularities travel on the surface thanks to the ob-
ject motion and therefore on the assumption that they are non-overlapping.

Linearising the basis We also show that a linear image basis of the target object becomes
available as a consequence of the dense matching despite thespecularities. Although a ba-
sis can be generated by re-aligning each pixel in the input images, non-linear artifact would
then appear in the by-product of simple re-alignment. Nevertheless, we factor out the spec-
ular components as residuals with respect to a linear combination of an intensity subset and
compute linearised pixel intensities, which directly achieves a linearised image basis. Linear
image bases are known to be useful for example to synthesise different appearances of an
object as learning data for the problem of object recognition [4, 13].

In Section 2 we first introduce the procedure of computing light source parameters using
the sparse point correspondence across input images. Section 3 proposes a core method for
dense depth search in the presence of specular reflections onthe surface, followed by Section
4 which describes how we can apply the result to generate a linearised image basis. We show
the results of our experiments with real objects in Section 5. Section 6 concludes the paper.
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2 Computing Light Source Parameters

For estimating camera parameters in the camera projection matrix, P, we solve the well
known affine structure from motion problem using SVD [18]. We then need a measure-
ment matrix containing the coordinates of some number of corresponding sample points
throughout input images. This is generally considered possible with standard techniques for
matching corners [5] and removing outliers unless the artifacts due to specularities (or some
intensities not fulfilling the assumed conditions, e.g. self-shadowing) distort the solution.
Accurate point correspondences under appearance change isalso important because the in-
tensities of the corresponding pixels parametrise the light source parameters, and thereby
linear subspace constraint, which we will utilise for densedepth search at the subsequent
stage.

2.1 The Light Source Matrix

Let us consider the intensityIi( j) of theith point on the surface of a moving object projected
into the jth image. Given the correspondences forn sample points throughm images, we
record the corresponding pixel intensities,Ii( j), in ann×m matrix asI = (Ii( j)), which we
call theillumination matrix.

For Lambertian surface, we can expressIi( j) in terms of the image formation equation
process so thatIi( j) = max(ni

⊤l( j),0). The 3-vectorni is defined at the first frame to be
the product of the albedo with the inward facing unit normal for the ith point whereas the
3-vectorl( j) is the product of the strength of the light source with the unit vector for its
direction. Note that

l( j) = R⊤( j) l(1), (1)

where the 3×3 matrix, R( j), is the rotation of the object from the first frame1, which is
taken to be the reference, to thejth frame. Multiplication ofR⊤( j) represents virtually
inverse rotation of the light source.

Then, we can form a matrix equation,

I = NL (2)

whereN is ann×3 matrix containing the rowsn⊤
i , andL is a 3×m matrix containing the

columnsl( j). We call matrixL (as well as̆L that appears in the sequel)light source matrix for
convenience of explanation. The familiar form for solutionby singular value decomposition
to obtain a rank 3 approximation to the matrixI is such that

I = N̆L̆ = (N̆A−1)(AL̆) . (3)

As is well known, the solution is unique up to an arbitrary invertible 3×3 transformationA
which transforms̆L into L by L = AL̆, or for its each column̆l( j) into l( j) by l( j) = Al̆( j)
wherel̆( j) denotes a column of̆L.

2.2 Computing The Light Source Matrix by LMedS

As stated above, we estimate the light source matrix,L, based on the sample point that are
in correspondence. However, computing point correspondences on a moving object is not

1The rotation matrix is computed by solving for the structurefrom motion problem.
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so trivial when the surface is with specular component that may cause spurious matching. A
known solution to this problem in the literature would be by removing outliers in terms of
geometric errors [19].

For an accurate computation of light source matrix,L, we carry this out by taking the
photometric measures into account2 in order to ensure that the artifacts which are caused by
specularities do not distort the correct solution. In practice, we choose to employ the LMedS
method without a particular need of a threshold. Namely, choosing a set of three sampled
rows in the illumination matrix,I3, we can compute a putative light source matrix which we
call L̆3. We then evaluate the consistency of each remaining row of the illumination matrix,
e.g.Ii = {Ii(1), Ii(2), ..., Ii(m)}, with L̆3 by computing the residual error

ε = ∣Ii − IiL̆
⊤
3 (L̆3L̆⊤

3 )
−1L̆3∣, (4)

and record the median ofε2. Note that the arbitrary transformation matrixA will disappear
by substitutingL̆3 = A−1L3 to this definition and therefore the putative matrixL̆3 can be
directly used here. Repeating this procedure while pickingup many different sample sets
of three rows of illumination matrix, we select a combination of three rows (points) which
minimises the median of the residual errors and compute the light source matrix accordingly
with the inliers.

3 Dense Depth Search for a Specular Surface

For dense surface reconstruction we search for the depth to the object at each pixel in a
reference image. We essentially need a minimum of three moreinput images (and thus four
in total) to impose the three-dimensional linear subspace constraint as suggested in [10, 12].
Choosing the reference image to be the canonical (as seen in [6]), we search for the depth,
Z, while comparing the set of image intensities,I( j;Pj(x,Z))∣ j=1,...,m;m≥4, at the coordinates
determined byx in the first canonical image, guess of depthZ, and the projection matrixPj

in each frame. The task is now to impose the geotensity constraint [12], i.e., to evaluate the
consistency between the referred set of intensities.

The linear subspace constraint3 violates in the presence of non-linear specular reflection.
Thus, we present an algorithm to deal with specularities by adding extra input images for
detecting the existence of a specularity when evaluating the consistency. That is, we choose
to employ five (or more) images as inputs, and interchangeably utilise an optimalintensity
subset consisting of four projected image intensities to find the best matches. The idea can
be well explained as an analogue to 4-source photometric stereo [3] and thus we brief the
notion of it before describing our algorithm.

Given the estimate of depth at each pixel in a reference image, a dense depth map can be
computed by updating with any well researched algorithm, for example, by minimising the
multiview constraint using graphcuts [10].

3.1 The 4-source Photometric Stereo

In the conventional 3-source photometric stereo, if a pointon the surface is subject to specu-
lar reflection from one of the three sources, the computed normal vector will be incorrect due

2Light source estimation is also viewed as robust model fitting in multiview reconstruction of textureless object
[20] where the inliers are the contour generator points of visual hull.

3It is available for regions with or without texture.
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to an elevated intensity value. By adding a fourth source, itbecomes possible to compute
a set of four surface vectors based on the four possible combinations of three light sources.
This redundancy allows tagging and removal of the specular source [3]. Namely, for a Lam-
bertian surface the four albedos would be identical, but a specularity in one light source will
make three of the four albedos higher while the albedo computed without using that light
source remains low. As a method to eliminate specular effects, Coleman and Jain define a
relative deviation in the surface albedoRdev at each point on the surface,

Rdev =
1

4Rmin

4

∑
j=1

∣R j −Rmean∣ , (5)

whereR j is each estimated albedo andRmin is the smallest of these. Then, they regardRdev

greater than a threshold as indication of a specular component, and choose the combination
of the three intensity values which have the smallest albedofor computing the surface nor-
mal. An improved scheme to determine a statistically more meaningful threshold is also
proposed using the variance of the camera’s intensity response [17].

3.2 The 5-source Algorithm for Dense Depth Search

Analogously to the 4-source photometric stereo, we add a fifth image for tagging and re-
moval of specular source. That is, by adding a fifth source, wecompute a set of five surface
vectors,n̂ (although it is determined only up to an invertible 3× 3 transform), at each guess
of depth based on the five possible combinations of four virtual light sources. Then, in-
stead of using all the elements ofI( j;Pj(x,Z))∣ j=1,...,m;m=5, for an appropriate evaluation of
referred set of image intensities we define an intensity subset by selectively skipping such
I(k;Pk(x,Z)) that is the most likely to be specular among the five differentintensities. We
denote such an intensity subset asIk̄( j;Pj(x,Z))∣ j=1,...,m, j ∕=k. For this selection to be possible,
we compute five different linear subspaces in advance.

Computing the light source matrices (multiple candidates) Let us consider that five im-
ages are given as input so thatm = 5, and first assume that specular reflection occurs mostly
in either of them according to the object motion. Given ann×m illumination matrix as
I = (Ii( j)), we define five differentn×4 illumination submatrices, Ik̄∣k=1,...,5, by skipping
thekth column,I(k). We then recall equation3 and compute a rank 3 approximation to each
Ik̄, so that

Ik̄ = N̆k̄L̆k̄ = (N̆k̄A−1)(AL̆k̄), (6)

whereL̆k̄∣k=1,...,5 in this case is a 3×4 light source matrix containing the columnsl̆( j)∣ j=1,...,4.
It should be noted that we apply the LMedS method introduced in Section2.2 to compute
each candidate of light source matrix.

Selection of optimal intensity subset Given multiple representations of linear subspaces,
L̆k̄∣k=1,...,5, at each pixel,x, and at each guess of depth,Z, we compute a set of five surface
vectorsn̂k̄ as

n̂⊤
k̄ ∣k=1,...,5 = Ik̄( j;Pj(x,Z))L̆⊤

k̄ (L̆k̄L̆⊤
k̄ )

−1
. (7)

Using those estimates of surface vectors, as was the case in the 4-source photometric stereo,
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we derive a relative deviation in the surface albedo,∣n̂k̄∣, such that

∣n̂∣dev =
1

5∣n̂∣min

√

√

√

⎷

5

∑
k=1

(∣n̂k̄∣− ∣n̂∣mean)2
, (8)

where∣n̂∣mean is the mean value of∣n̂k̄∣ and∣n̂∣min is the smallest of these, respectively. We
then select the combination of the four intensity values which give the smallest estimate of
albedo.

Computing the correspondence If a specularity is judged to be occurring whenk = h, we
pick l̆( j) from L̆h̄ to compute the estimated values of the intensities as,

Îh̄( j;Pj(x,Z))∣ j=1,...,5, j ∕=h = n̂⊤
h̄ l̆( j) . (9)

We then define the error function to evaluate the set of intensities I( j;Pj(x,Z)) without being
influenced by the suspected specularity as

e(x,Z) =
5

∑
j=1, j ∕=h

(I( j;Pj(x,Z))− Î( j;Pj(x,Z))2
. (10)

We measure the error,e, at regular small intervals of depth,Z. It is clear that as the depth
parameter is varied the location of the corresponding points in each image will trace out the
corresponding epipolar line in each image. When the depth iscorrect we expect the error to
approach zero and we store a primary depth hypothesis that minimises the errore(x,Z) as
well as several other depth candidates wheree(x,Z) is locally minimised as has been studied
in [2]. We then choose such candidate of depthZ that is most consistent with the primary
depth hypotheses in the surrounding pixels.

4 Linearising the Image Basis

Based on the pixelwise correspondence between input imagesof an object in motion, we
can generate images of the object as if they were captured in an identical pose as seen in the
reference frame but under varying lighting. This is done by re-aligning the pixels in the input
images. We can either employ a set of three images from the generated images directly as an
image basis, or apply the PCA to the re-aligned images and form an orthogonal basis by the
three eigenvectors corresponding to the highest eigenvalues [13]. In either case, however,
non-linear artifacts will naturally appear in the resulting basis as long as specular reflections
are present in the input images even when the correspondenceis accurately computed despite
the specularities. Since the linear functionality of the basis will then deteriorate, we wish to
replace the specularities with some values that linearly agree to each other, i.e., linearise the
appearance of image basis.

Let us consider the case thatm images are given as input and that for simplicity we should
typically replace an intensity,I(h), that is most likely to be specular among a corresponding
intensity set,I( j)∣ j=1,...,m. For each corresponding set of pixels in a set of re-aligned images,
we have a tag of the specular source such that thehth element was removed in the process of
depth search, and the utilised intensity subset was

Ih̄( j;Pj(x,Z))∣ j=1,...,m, j ∕=h . (11)
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That is, we have used the intensity subset excluding thehth element for computing the cor-
respondence at the correct depth. Since it should be consistent with the corresponding 3×4
light source matrix,̆Lh̄, containing the columns̆l( j)∣ j=1,...,m−1 (excludingl̆(h)), we can esti-
mate a linearised value ofI(h) by

Î(h) = n̂⊤
h̄ l̆(h) , (12)

wheren̂⊤
h̄

is computed by equation7 wherek = h. We can then factor out the specular
component ofI(h) as a residual with respect to the linear estimate by

I(h)− Î(h) . (13)

The residual should be zero when no specularity is present, given the re-alignment is accu-
rate. If some residual is observed, we can linearise the corresponding set of pixels by directly
replacingI(h) with Î(h). This operation at each pixel in a set of re-aligned images allows us
to linearise the entire image basis.

5 Experiments

We illustrate the performance of the proposed scheme using afew examples of real objects: a
human face and a water pitcher, whose surfaces are composites of Lambertian and specular
components. See Figure1. Each of them shows three input images out of five that were
used, respectively. They were captured while the object pose varies under a point light
source whose position is close to the viewing direction, butunknown. Ambient light was
also present in capturing the human face. As can be observed,weak or strong specularities
appear on different parts of surfaces according to the object pose relative to the light source.
Since a light source is placed beside the camera, in each image, parts of the surface where
the orientation is close to the direction toward the camera tend to take on specular reflection.
For example, the face in the leftmost image takes on relatively strong specular components
in the left part of forehead and cheek according to the face direction.

Figure1 also include resulting depth maps of water pitcher and humanface, computed
for the reference input images in the midst, respectively. The lighter, the closer to the camera.
In both examples we tracked about 15 sample points for correspondence but a few of them
were removed by the LMedS method with the photometric measure. For the dense depth
search in each case, we employed a 15×15 template to suppress the error arising from image
noise (but not to over-smooth the resulting surface). The depth maps essentially represent
the accuracy of the computed dense correspondence between the input images, and we also
display the reconstructed surfaces viewed from different directions. The surfaces are well
recovered considering the fact that only five images are used, and uninfluenced by the partial
specularities. The results on the upper part of the water pitcher is erroneous because that part
is not visible throughout all the input images and is also with strong inter-reflections.

Figure2 shows the reference image of water pitcher (same image that is in the midst
of Figure 2 (left-top)) with annotations of two sample locations, (a)x = (160,100) and (b)
x= (200,100) and illustrate the errors at hypothesised depths. Indicated as ’b’ is an example
point that takes on a specular reflection as the water pitcherrotates (see the leftmost-top
image of Figure 2) whereas ’a’ is a point that does not across the five input images. It should
be noted that those two points are sampled at different locations but at an identical distance
from the camera and therefore their depths should be estimated identically.
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Figure 1: Left: Three examples out of five input images of a water pitcher (top) and a
human face (bottom) captured in different poses under a point light source whose direction
is unknown, respectively. Right: A depth map estimated referring the input image in the
midst (the lighter, the closer) and the recovered surface with and without texture shown from
different directions.
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(a) The errore(x,Z) at ’a’. (b) The errore(x,Z) at ’b’.

Figure 2: Left: The 320×320 reference image of water pitcher example (the same imageas
in the midst of Figure 2 (left)). Annotated as ’a’ and ’b’ are two sample locations for detailed
analyses. Right: The errorse(x,Z) with respect to hypothesised depths,Z, are plotted for
two sampled points. In both examples, the solid line indicates the errors by the proposed
method and the dashed line by a conventional method [12].

In Figure2 (a), with the solid line we plot the errore computed by equation10at different
hypothesised depths for the sample point ’a’. Smaller values of Z correspond to smaller
(closer) distances to the viewer. The error is minimised atZ = 24 and it is consistent with
the true depth although other local minimum are also present. With the dashed line, for a
comparison, we superimpose the errore computed by a conventional method [12] but using
all the five input images. The minimum is found at the same correct depth, which is as
expected since point ’a’ does not take on specular reflectionacross the input images. The
error, e, obtained by the proposed method turned out to be generally lower than those by
the conventional ones. Recalling that it is defined in terms of grey scale values, we can
explain the reason by the fact that (the square of) the highest pixel value among the referred
set tends to be excluded from the computation in equation10. Analogously, Figure2 (b)
shows the errore computed for point ’b’. In this case, the errors by the two methods are not
minimised at the same depth. The result by the conventional method is obviously influenced
by a specularity and the minimum error is realised at a shifted wrong depth. However, we
can observe that the proposed method still minimises the error at the same correct depth as
found for point ’a’ (the two sample points are at identical distance).
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Figure3 (left) shows re-aligned images of the water pitcher (top), corresponding to the
three input images shown in Figure1 (left) in the same order. Each of them is also separated
to specular components (middle) and a linearised image after removing the residuals (bot-
tom). It can be observed that residuals are extracted in different parts of the surface according
to the object motion. It is natural because the orientation of the object changes in such a way
that it spans the 3D space so that specular regions travel accordingly. Comparing the top and
bottom rows of the figure, it can be noticed that the strong specularity that is present due to
the round shape of the object at a close point (viewed from thecamera) has been removed in
the linearised images. Analogously, Figure3 (right) shows re-aligned images of the human
face, each of which is separated to specular components as the residuals and a linearised
image after removing them. Notice that some of the specular components, e.g. in the above
mentioned face image are identified as residuals, and then alleviated in the linearised image.

Figure 3: Top: Re-aligned images generated from the centralpart of pitcher images (left) and
face images (right). Middle: Extracted specular components (residuals, stressed by factor 5
for display reason). Bottom: Linearised images after removing the specular components.

6 Summary and Future Work

We have addressed the problem of recovering the surface of a moving object using the shad-
ing variance due to object motion. In particular, we have dealt with objects with specular sur-
faces for which it was previously difficult to find accurate point correspondence and search
for dense surface. The key idea for dense point matching is touse an optimal subset of in-
tensities that is the least influenced by specular reflections. To our knowledge it is one of the
few trials of finding correspondence in the presence of specularities on the top of intensity
variance due to object motion. We have also shown that it is possible to linearise the input
images by directly applying our results. It should be stressed that our experimental results
were obtained using as few as five input images, with the fifth one to deal with a possible
specularity. We are interested in extending our algorithm to accommodate a large number of
input images so that it can deal with a more significant specularities. Other interesting po-
tential directions for future work include combinations with different approaches for coping
with highlights such as using silhouette cue [20] or shadows [7].
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