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We develop a fast and accurate image segmentation and pose tracking
method based on the assumption that, given an accurate 3D model of an
object, its segmentation from any given image is fully defined by its pose.
Our method allows for fast 2D–3D pose tracking and 2D segmentation
using a single, unified, energy function. Unlike most previous work our
method consists of a single optimisation step, rather than the usual two
step approach.

Inspired by [1] we aim to maximise the posterior per-pixel probabil-
ity of foreground and background membership as a function of pose. This
was shown to yield a better behaved energy function (in the 2D case),
when compared to a standard level set formulation such as [2]. In our
case we assume a known 3D model and calibrated camera, and seek the
six degree of freedom rigid transformation that maximises the pixel-wise
posterior energy function. Like [1] we represent the region statistics by
colour histograms and adapt these online. The minimization is done us-
ing gradient descent (though other more sophisticated minimisation tech-
niques are not precluded).

Let X0 = [X0,Y0,Z0]
T ∈ R3 be a 3D point in the object coordinate

frame, while X = [X ,Y,Z]T = RX0 + T ∈ R3 is a point in camera coor-
dinate frame. The image itself is denoted I, and the image domain by,
Ω ⊂ R2, with an area element denoted dΩ. An image pixel x = [x,y] in
this domain has the value I(x) = y (in our experiments this is an RGB
value).

We assume a calibrated camera, so without loss of generality, x =
X/Z,y =Y/Z. The pose parameters – i.e. rotation and translation relating
points X0 in the object frame to the camera frame – are denoted by λi.

The projection of the occluding contour of the object is denoted by the
curve C. This closed curve is the zero level-set of an embedding function
Φ(x) [2]. The curve C segments the image into disjoint regions Ω f and
Ωb, for foreground and background respectively. Each region has its own
statistical appearance model, P(y|M) where M is one of M f or Mb.

Finally, by He(x) we denote the smoothed Heaviside step function
and by δe(x) the smoothed Dirac delta function [2].

Assuming the level set formulation of [1], the energy given by the
negative log (posterior) probability of the shape of the contour (encoded
by the embedding function Φ), given the image data, is:
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where Pf and Pb are the posterior probabilities P(M f |y) and P(Mb|y) re-
spectively (further details are given in [1]).

We differentiate with respect to the pose parameters λi, aiming to
evolve the contour in a space parametrized by the pose parameters:
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At each iteration of the algorithm we re-compute Φ as the signed-
distance transform from the projected contour (on the GPU for efficiency),
and the differentials ∂Φ

∂x and ∂Φ

∂y follow trivially.
Every 2D point x on the contour of the (true) projection of the 3D

model has at least one corresponding 3D point X.
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Figure 1: Representation of the object showing: the contour of the pro-
jection C and the corresponding contour around the visible part of the
3D model, the foreground region Ω f and the background region Ωb, a
2D point x on the contour and its corresponding 3D point in the object
coordinate frame X

and similarly for y. Noting that X ,Y and Z are simple functions of the
pose parameters, it is then straightforward, via a further application of the
chain rule, to obtain ∂X

∂λi
, ∂Y

∂λi
and ∂Z

∂λi
.

For image points on the inside of the contour, we backproject to the
closest point on the object. For image points not exactly on the contour
but outside (and which therefore have no true backprojection), we approx-
imate X as the backprojection of the point on the contour which is closest
in the image. Since the actual calculation takes place in a narrow band
around the projected contour, this does not introduce gross errors.

When rotating and translating a 3D model some surfaces appear and
others disappear, as the pose transitions between so-called “generic” views.
The singular poses between generic views are characterised by ambiguous
back-projections: a back-projected image contour point may have multi-
ple tangencies with the object. In these cases the rate of change of the
image contour with respect to the pose parameters is not only dictated
by the closest points on the 3D model but also by the (infinitesimally in-
visible) furthest points. In these transition cases we include terms from
both the closest and distant points to give greater robustness when moving
between different generic views of the object.

We allow online adaptation of the foreground and background statis-
tical models. Like [1], this is achieved using linear opinion pools with
variable learning rates αi, i = { f ,b}.

Pi(y|Mi)← (1− (αi))Pi(y|Mi)+(αi)Pi(y|Mi) (5)

The factors αi are fixed for all frames. In all our experiments α f = 0.01
and αb = 0.02. To avoid polluting the histograms with incorrect data, we
only update when the energy minimization has converged.

Most of the tasks involved in one iteration of our algorithm operate
per-pixel and so we can achieve significant gains by exploiting this high
degree of parallelism. We make use of the NVIDIA CUDA framework
to implement various steps on a GPU, so we are able to achieve real time
performance.

In the paper we include our results which demonstrate robustness to
motion blur, occlusions and imperfect model information. We also show-
case the benefits of using the pixel-wise posterior formulation (rather than
the standard log-likelihood one) with a comprehensive experiment.
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