Specularity and Shadow Interpolation via Robust Polynomial Texture Maps
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Polynomial Texture Maps (PTM) [1] form an alternative method for
apprehending surface colour and albedo that extends a simple model of
image formation from the Lambertian variant of Photometric Stereo (PST)
to more general reflectances. Here we consider solving such a model in a
robust version, not to date attempted for PTM. But the main upshot of uti-
lizing robust regression is in the identification of both shadows and spec-
ularities automatically, without the need for any thresholds, in a tripartite
set of weights for pixels that are labelled as matte, shadow, or specularity.
Original images are captured using a hemispherical set of lights, and pixel
values across the lighting directions are then labelled as inliers, or outliers
of two types. A per-pixel robust regression on luminance is catried out us-
ing Least Median of Squares, and automatically-identified outlier pixels
are labelled as shadows if they are darker than matte and correspondingly,
specular outliers are too bright. Inlier identification generates correct val-
ues for chromaticity and for surface albedo and thus matte luminance and
colour. Then a robust version of PST, using only PTM inliers, improves
estimates of normal vectors and albedo recovered. With specular pixel
values over the lights in hand we model specularity using a radial basis
function (RBF) regression, and non-specular pixel departures from matte
using a second RBF set. Then for a new lighting direction, we can readily
interpolate both specular content as well as shadows.

Here, we are interested in using PTM as a vehicle to carry out interpo-
lation of specularities and shadows. To the best of our knowledge robust
methods have not to date been applied to PTM, and we use these to be
able to accomplish interpolation. As well as using robust regression, this
paper moreover shows how outliers can be classified as belonging to two
types: either specular highlights, or self- or cast-shadows. Knowledge
of inlier pixel values means that recovered surface albedo and chromatic-
ity is robust, in the sense of ignoring outlier contributions and thus more
accurately mapping surface reflectance and colour.

Finally, knowledge of outlier labels means that we can independently
model specularity and shadow. Then for a new lighting direction, we can
generate pixel values interpolating known values of both; here we use a
Radial Basis Function (RBF) interpolation model. In this paper we carry
out robust regression on the luminance values, not on R,G,B separately.
Since we generate the specularity ¢in an interpolated image, separately
from the remaining contribution ¢, we can then produce a full-colour
interpolant image using the luminance times matte chromaticity for the
non-specular contribution, plus specular-luminance times the chromatic-
ity for the specular colour.

Results on re-creating the input images are shown to have excellent
agreement with the originals, over a variety of input sequences. For
shadow and specularity interpolation — generating images for non- ob-
served lighting directions — the method is shown to indeed generate sensi-
ble results. The main contributions in this paper are (1) application of ro-
bust regression to PTM; (2) separate modelling and thus better capturing
of shadows and specularities; and (3) specular and shadow interpolation.

Suppose we have acquired n images of a scene, taken from / = 1..n
different lighting directions a’ as in Fig. 1(a). Let each RGB image ac-
quired be denoted pI . Suppose we make use of the luminance images
instead, L/ = 213(:1 Pr- This reduction in dimensionality reduces the com-
putational burden of robust regression and, since we mean to separate out
the specularity from the matte component, we can re-insert colour later
separately for matte colour and specular colour.

Then a PTM model consists of a nonlinear regression from lighting
to luminance via a vector of polynomial terms p, with p a function of
lighting direction a, as follows:
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where cis a vector of regression coefficients. Each pixel has its own ¢,
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Figure 1: (a): Hemispherical dome with multiple, identical lights. (b,d):
Two inputs. (c): Interpolant for light between (b) and (d). (e): Weights.
(f): Recovered chromaticity ¥ for (c). (g): Matte from PTM L = p(a)c.
(h): Intrinsic, P j insic = @ X » Where o is albedo.

and the Lvector is the collection of all luminances at that pixel over the
n images, for polynomials P for the known lighting directions. For a ro-
bust regression to replace (1), here we utilize the LMS [2], which gen-
erates outliers “on a silver platter”, without any intervention. So in this
luminance-based variant, regression is

¢ = LMS(P,L) )
The output of LMS is the set of regression coefficients ¢, plus a set of n
weights (labels) widentifying inliers (w = 1) and outliers (w = 0), thereby
excluding some lights at this pixel. But we know here that outliers are
generated because (1) L values are too high to suit the model (1) — we
take these to be specular contributions; or (2) luminance is too low (or
the model generates negative values), for a particular light — these are
likely shadow locations. Thus we arrive at a tripartite set of weights
{w% wt,w™} at each pixel, with w° set for lights generating inlier val-
ues, w for specularities, and w™ for shadows. Fig. 1(e) shows weights
corresponding to input image Fig. 1(b), w” as white, w as green, and w™
as red.

Now we can go on to generate a matte version of the input set of im-
ages, or indeed an interpolated matte image, using the regression result ¢,
as in Fig. 1(g). We are assured of doing better than standard PTM since
we have excluded distracting specularities and shadows from considera-
tion whilst generating coefficients c.

At this point, we already have an advantage of applying a robust
method to the problem at hand, viz. a more reliable calculation of co-
efficient ¢. But in fact we also have produced a better grasp of colour,
as well. Let us factor each RGB triple p into luminance L = R+ G+ B
times chromaticity ) . Luminance will be composed of a scalar albedo o
times lighting strength times shading factor s; since we have no way of
disentangling lighting intensity from surface reflectance, we shall simply
lump both scalars into ¢. Thus,

p =sax, x={RGB}/(R+G+B) 3)
An intrinsic image (for this lighting strength), i.e. surface independent of
shading, would then be P inrinsic = OUX )

Le., this is what the surface would look like under this light, with shading
removed.
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