
PASSINO, PATRAS, IZQUIERDO: LATENT SEMANTICS LOCAL DISTRIBUTION. . . 1

Latent Semantics Local Distribution for
CRF-based Image Semantic Segmentation
Giuseppe Passino
giuseppe.passino@elec.qmul.ac.uk

Ioannis Patras
ioannis.patras@elec.qmul.ac.uk

Ebroul Izquierdo
ebroul.izquierdo@elec.qmul.ac.uk

MMV Group
School of Electronic Engineering and
Computer Science
Queen Mary, University of London
London, UK

Abstract
Semantic image segmentation is the task of assigning a semantic label to every pixel of
an image. This task is posed as a supervised learning problem in which the appearance
of areas that correspond to a number of semantic categories are learned from a dataset of
manually labelled images. This paper proposes a method that combines a region-based
probabilistic graphical model that builds on the recent success of Conditional Random
Fields (CRFs) in the problem of semantic segmentation, with a salient-points-based bags-
of-words paradigm. In a first stage, the image is oversegmented into patches. Then, in
a CRF-based formulation we learn both the appearance for each semantic category and
the neighbouring relations between patches. In addition to patch features, we also con-
sider information extracted on salient points that are detected in the patch’s vicinity. A
visual word is associated to each salient point. Two different types of information are
used. First, we consider the local weighted distribution of visual words. Using local
(i.e. centred at each patch) word histograms enriches the classical global bags-of-word
representation with positional information on word distributions. Second, we consider
the un-normalised local distribution of a set of latent topics that are obtained by proba-
bilistic Latent Semantic Analysis (pLSA). This distribution is obtained by the weighted
accumulation of the latent topic distributions that are associated to the visual words in
the area. The advantage of this second approach lays in the separate representation of the
semantic content for each visual word. This allows us to consider the word contributions
as independent in the CRF formulation without introducing too strong simplification as-
sumptions. Tests on a publicly available dataset demonstrate the validity of the proposed
salient point integration strategies. The results obtained with different configurations
show an advance compared to other leading works in the area.

1 Introduction
The paper proposes a method for semantic segmentation of natural images. This task entails
the association of each image pixel with a label of a semantic category (e.g. car, bicycle,
tree). An example of semantic segmentation is given in Fig. 1 for an image from the Mi-
crosoft Research Cambridge (MSRC) database1. The latter is used throughout the paper and
described in Section 4.
c© 2009. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1 Available on-line: http://research.microsoft.com/vision/cambridge/recognition/.
BMVC 2009 doi:10.5244/C.23.26

http://research.microsoft.com/vision/cambridge/recognition/


2 PASSINO, PATRAS, IZQUIERDO: LATENT SEMANTICS LOCAL DISTRIBUTION. . .

void

building

grass

tree

cow

sky

aeroplane

face

car

bicycle

Figure 1: Semantic segmentation example for an image from the MSRC database. The
legend specifies the different categories used in the paper.

Semantic segmentation is conceptually different from classical segmentation, the ulti-
mate goal being the correct category association to image areas rather than simple object
boundary detection. Furthermore, semantic segmentation methods are based on a bottom-
up analysis aimed at the labelling of each pixel. This is in contrast with object detection
methods based on top-down object models, in which object instances are searched within
the image by finding the best model match.

The major challenge in the task of semantic segmentation is how to jointly consider
visual properties and the context of a pixel at different scales. The short-range relationships
have been successfully modelled via probabilistic graphical models. Of particular interest
are methods based on discriminative models such as Conditional Random Fields (CRF) [8],
the discriminative version of a Markov Random Field (MRF). With CRFs, shared (non local
to single nodes) features can be naturally integrated into the model without the introduction
of oversimplifying independence hypotheses. Additionally, since appearance probability
distributions are not explicitly modelled, fewer training examples are required, resulting in
reduced computational complexity.

Long-range connection cliques in the CRF make exact inference intractable. For this
reason CRFs are used to enforce locally smooth labelling [6, 19]. The introduction of higher
order potentials defined over regions [6] results in improvements in the accuracy on the
object boundaries rather than in more consistent overall labelling configurations. Since close
pixels are usually semantically strongly correlated, a reasonable strategy is to cluster groups
of pixels into patches and apply the CRF at patch-level [21, 24]. This reduces the graph size
and the computational complexity. In this framework, the main research question is how
to include visual features and long-range information in the model to describe long-range
interactions between graph nodes.

1.1 Related Work

With generative models, part dependences at different scales are made explicit by modelling
the presence and layout of objects in the scene [9]. This often has a great cost in terms of
training and inference complexity. In contrast, with discriminative models, one way towards
greater context awareness is the use of global clues. In particular, distributed [19] or global
features [21, 24] can be integrated in the patch feature vector. These features do not directly
relate to semantic categories, and have to be carefully chosen in order to capture context: de-
scriptors calculated in large areas typically suffer from background noise and fail to focus on
objects of interest. Verbeek and Triggs [24] consider aggregate versions of local descriptors,
with the disadvantage of accepting a degree of redundancy in the feature set. Other works
rely on simple, appearance-based image-level descriptors [21] that are too generic and not
tailored to the description of object instances, giving therefore weak context information. In
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Textonboost [19], distributed features focus on appearance coherence between near pixels
rather than longer range semantic coherence.

Another approach is to integrate independently learnt long-range constraints in the prob-
abilistic model [4, 21]. This greatly increases the complexity of both inference and learning
because these constraints are based on categories (e.g., through specification of allowed la-
bel patterns) rather than on features, that introduce long-range label dependencies. Learning
constraints on a large number of elements needs large training sets. Such constraints have
limited generalisation properties, tending to be bound to the specific training data from which
they are obtained.

1.2 Paper contributions and overview

In the light of what said so far, we propose a method to integrate distributed information
to local patch analysis in a CRF-based framework for semantic segmentation. The graphi-
cal model is patch-based, where the patches are obtained through oversegmentation. In this
way, several advantages are achieved: first, we split the complexity of handling the cor-
relation among neighbouring pixels from the short-scale statistical dependencies between
patches. Secondly, object boundary detection accuracy is improved in comparison with
methods based on rectangular patches [7]. Furthermore, descriptors extracted from coherent
patches are less affected to noise deriving from co-presence of different categories.

The additional information interacts with the probabilistic model as an additional fea-
ture, thus retaining structural simplicity and efficient inference properties. A key point of
our contribution is that these additional features are derived from distribution of visual words
capturing local appearance at salient points in the vicinity of a patch. Such information has
proved very powerful for object modelling [1, 16, 20] but has been rarely used for semantic
segmentation. The reason is that salient points are sparse and therefore fail to cover the full
area of the image homogeneously; dense descriptors are used instead [2, 10]. Nonetheless,
considering both features at salient points and densely extracted features for content descrip-
tion can be beneficial since they contain largely complementary information. Salient points
are localised at stable extrema of the scale-space, and the associated descriptors are designed
to optimise the representation of such areas. Descriptors extracted at patches obtained by
low-level segmentation provide dense coverage of the image, and describe areas homoge-
neous in the feature space. We consider two alternative methods to integrate visual words.
The first one is to build (weighted) histograms of local words distributions, the other one is
to consider weighted distributions of latent topics associated to the words by the means of
probabilistic Latent Semantic Analysis (pLSA) [5].

Both the proposed descriptors are calculated in the vicinity of the patch. In this way,
significant information related to the visual words location is integrated in the bag-of-words
paradigm, which in despite of the recently obtained success relies only on the relatively baci
information of word co-presence in the image. Moreover, changing the size of the descriptors
support allows to consider word contributions at different scales.

The remainder of the paper is organised as follows. In Section 2 our base model is
presented. In Section 3 the two different proposed strategies for integrating contextual infor-
mation extracted at salient points are presented. The experimental results are discussed in
Section 4. Finally, Section 5 terminates the discussion by presenting our conclusions.
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2 Labelling Framework

2.1 Probabilistic Model
The patch-based CRF is defined over a graph G = {V ,E } in which each node vi ∈ V is
associated to a random variable yi over the sample space L = {l1, . . . , ln} describing the
label of the i-th image patch. A labelling y is the vector y = (y1, . . . ,ym) for the m image
patches. The set of variables is Markovian, that is, each variable is independent on the entire
graph when conditioned on its neighbours. This property allows the factorisation of the
conditioned probability function for y, that is a Gibbs distribution

p(y|X;θ) =
expΨ(y,X,θ)

Z(X,θ)
, (1)

where θ is the model parameter vector, X the observation (features) and Z(X,θ) a normali-
sation factor. The local function Ψ is a summation of terms depending on clique variables,
so that Ψ(y,X,θ) = ∑c∈C φc(yc,X,θ), where C is the set of cliques and yc is the projec-
tion of y on the clique c, that is, yc = (yi : i ∈ c). In our model, cliques are unary and
pairwise [14, 19, 24], so that

Ψ(y,X,θ) = ∑
v∈V

∑
k∈K1

θkφ
1
k (yv,X)+ ∑

(i, j)∈E
∑

k∈K2

θkφ
2
k (yi,y j,X) , (2)

where K1 and K2 are the sets of indices k of the parameter vector θ referring to differ-
ent unary and pairwise potentials, respectively. The unary potentials encode the appear-
ance model. They have the form φ 1

k (y,x) = xik δ (y, l jk), where δ is the Kronecker delta and
the indices ik, jk are indexed in k to span the feature vector and the label set respectively.
The pairwise potential functions encode a symmetric category look-up table. Their form is
φ 2

k (y,y′) = δ (y, lik)δ (y′, l jk), where the indices ik, jk span the label set. The pairwise poten-
tials are independent of patch features, since in previous works these have been shown to
be unhelpful [24]. The model handles the presence of unlabelled patches in the training set.
Whenever only a subset Va ⊆ V of nodes is assigned, leaving the nodes Vl = V \Va latent,
the likelihood of the assigned nodes,

p(ya|X;θ) =
∑yl

expΨ(y,X,θ)
Z(X,θ)

, (3)

is considered in spite of Eq. (1). An additional “void” category in the label space accounts
for observations that are not associated to any of the given semantic classes.

Training and Inference. Inference in the model is done via the Belief Propagation (BP)
algorithm. In the training phase, the Maximum A Posteriori (MAP) criterion is used as fitness
function to be maximised. A quasi-Newton iterative method is used to find the maximum of
the training set likelihood

log(L) = ∑
i

log(Li)−
‖θ‖2

2σ2
θ

, Li = p(yi|Xi;θ) , (4)

where i is the image index in the training set and the term ‖θ‖2
2σ2

θ

is a Gaussian prior imposed

to the parameters to control overfitting. By introducing a conditioned graph (indicated by
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Figure 2: Oversegmentation (in yellow) with overlaid acMST (in red) for two database im-
ages, and oversegmentation overlaid to their hand-made labelling.

the subscript c) where all the labelled nodes are assigned, the log-likelihood of the i-th image
assumes the form

log(Li) = Zi(Xi,θ)−Zci(yai,Xi,θ) . (5)

The gradient of Eq. (5) can be written in terms of conditioned or unconditioned clique vari-
ables marginal probabilities, that are provided by the BP algorithm.

When labelling a new image, the optimal labelling

yopt = argmax
y
{p(y|X;θ)} , (6)

is iteratively found via the max-sum algorithm.

2.2 Patch Extraction
The advantages of using oversegmentation in the context of part-based scene analysis with
random fields have been proved [4, 15]. In our work patches are obtained via the Normalised
Cuts (NCuts) spectral clustering algorithm [18], accounting for texture and edge information
in the pixel similarity measure [13].

Patch features are based on colour, texture, and positional information. For colour we
use an invariant hue descriptor [22], in the form of a 30-bins hue histogram. For texture
we use textons [12], histograms of texture words obtained by clustering non-normalised,
multi-scale, multi-orientation Difference-of-Gaussians (DoG) filterbank responses. We have
chosen a 300 words dictionary, built across the entire database. The descriptor dimension is
then reduced to 40 by the application of a Principal Component Analysis (PCA) algorithm
to ease the learning of the appearance by the CRF. The normalised centre coordinate vector
of the patch is used as position feature.

2.3 Graph Connectivity
The oversegmentation provides the connectivity for the patches. We aim at building a tree
structure from the original graph for two main reasons. First, an open structure allows for fast
exact inference with BP: the number of BP iterations is linear with respect to the diameter of
the tree (that is, the greatest distance between any two nodes), while in presence of a closed
graph the Loopy BP (LBP) algorithm, a generalisation of BP, does not offer guarantees
of convergence [3]. Other than for the algorithm performance, exact inference is crucial
for the convergence of the optimisation of a cost function based on differential terms as in
Eq. (5). Reducing the patch connectivity leads to limited context consideration: we however
maximise the correlation between patches by linking patches coherent in appearance. We
propose the appearance-coherent Minimum spanning Tree (acMST) algorithm to build the
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tree. In this MST algorithm, the weight of an edge is the similarity between the hue part
of the linked patches descriptors. The distance measure is the symmetric Kullback-Leibler
divergence, defined for two distributions P,Q as

DKLs(P||Q) = DKL(P||Q)+DKL(Q||P) , (7)

where DKL is the (asymmetric) KL divergence. In Fig. 2 an example of oversegmentation
and acMST is presented, as well as a visual idea of how the oversegmentation matches the
hand-labelling. Quantitatively, the use of acMST instead of another connectivity criterion
as weighting the edges on the distance between the patch centres reported an increase in
performance of over 1% on the MSRC dataset.

3 Distributed Descriptors
The basic method described in Section 2 is enriched with distributed descriptors to account
for context on a scale larger than the one considered with the CRF connections. These
descriptors, being based on visual words taken at salient points, carry information that is
complementary to the one associated to image patches. We propose two methods to integrate
visual words into the CRF framework, the first one based on words histograms, the second
one on latent topics histograms. The two strategies however differ only on the means by
which the distributed feature is computed, not on the integration in the CRF.

In both the methods, salient points are at first detected and descriptors extracted with
the SIFT algorithm [11]. A dictionary of 1000 visual words is then obtained via k-means
clustering over all the dataset. Then, for each patch an additional feature vector that accounts
for local word distributions is calculated, according to the two different strategies detailed
in the remainder of this section. In both the cases, the contribution of the single word is
weighted on its distance from the patch centre, thus achieving the advantages related to
bag-of-words models [20] while not discarding positional information. The weight ws is
a Gaussian ws(l, lp) ∝ N (‖l− lp‖,σ2

s ), where l, lp are the word location and patch centre
respectively. By changing the variance σ2

s of the window we consider salient points in
narrower or broader neighbourhoods. Finally, the additional feature vector xd is integrated
in the CRF via singleton potential factors φ 3

k (y,xd) = xd,ik δ (y, l jk). The additional factors do
not compromise the complexity of the inference in the probabilistic model since distributed
information is accounted for at feature-level rather than in terms of label patterns.

Windowed Word Histograms. The first of the proposed descriptors is the Windowed
Words Histogram (WWH), that is, the histogram of words in the vicinity of a patch, weighted
as detailed earlier. The descriptor length is then reduced to avoid an unbalance in the num-
ber of parameters associated to different features in the CRF, that would worsen the learning.
PCA is used to reduce the dimensionality of the descriptor to 20. The word histograms en-
close full word co-presence information, and the PCA acts over all the descriptors in the
dataset, thus optimising the descriptivity of the reduced feature vectors.

Latent Topic Distributions. An alternative descriptor is the Latent Topic Distribution
(LTD). This descriptor is obtained by associating a compact representation to the single
words and simply accumulating them in the vicinity of each patch. Visual words are at first
considered globally when the pLSA algorithm [5] is used to associate a distribution of latent
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Figure 3: Detail of two examples in which the ground truth provided with the database is not
consistent with the actual object category near the object boundaries. On the left, the ground
truth image; on the centre, the original image with segmentation and ground truth categories
boundaries; on the right, our labelling.

topic posteriors to each word. We decided to use a total of 20 latent topics, that are expected
to represent different traits of some of the categories (visual words in general cover different
categories unequally). To obtain the final patch descriptor, these posteriors are weighted as
described earlier and summed up to form the final descriptor.

As for the WWH descriptor, the pLSA entails a dimensionality reduction, but in this
case that happens before the integration of contributions from different words in the local
window. This is a simplifying assumption, since some information related to words co-
presence is mainly lost before the windowing step. On the other hand, the use of pLSA
ensures that distributions of words in the entire image is considered when associating the
descriptor to the words. Additionally, this representation allows for more flexibility, as for
example for a dynamic choice of the window centres and scales [17], that is however not
performed at the moment. Finally, adding topic distributions associated to different words is
not coherent with the assumption of independent words, but allows to consider local word
densities in an effective way.

4 Experimental Results
For the assessment of the proposed methods, we used the publicly available MSRC database
of nine categories. This challenging set of images presents complex outdoor scenes, and
indoor scenes with faces in cluttered background. Instances of object categories in gen-
eral appear at different scales and exhibit large variability in terms of appearance. Multiple
instances of the same category can appear in one image. The ground truth labelling of
the images is provided at pixel level. In Fig. 1 an example with associated ground truth
is shown. The database contains 9 semantic categories, and ambiguous pixels are left un-
labelled (“void”). The use of this dataset allows us to compare the results with previous
research works [23, 24]. To increase the reliability of the results, they are averaged over runs
on three different splits of training/test images, in a ratio of 75%/25%.

Performance estimation. In the remainder of the paper, unless explicitly stated otherwise,
we present the classification accuracy at patch-level. We consider that a patch is classified
correctly if its label is the same as that of the majority of the pixels in the ground truth label
map. Results on the estimation of the labelling accuracy at pixel level, which are obtained
by labelling each pixel of a patch with the corresponding patch label and then comparing
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Building
(14.5%)

Grass
(30.1%)

Tree
(14.1%)

Cow
(7.2%)

Sky
(13.4%)

Airplane
(2.8%)

Face
(3.2%)

Car
(7.5%)

Bicycle
(7.3%)

Average

Lit. [23] 74.0 88.7 64.4 77.4 95.7 92.2 88.8 81.1 78.7 82.3
Lit. [24] 73.6 91.1 82.1 73.6 95.7 78.3 89.5 84.5 81.4 84.9
Base 63.0 94.2 68.9 84.4 93.7 75.8 92.9 76.4 86.5 82.9
WWHG 50.3 87.4 70.3 73.7 81.2 65.7 85.2 66.2 83.1 75.3
WWH3 71.2 94.2 71.7 85.4 94.0 73.1 96.9 70.0 95.2 84.8
WWH6 74.9 94.6 72.1 87.9 94.9 73.0 99.3 74.6 94.2 86.2
WWH12 68.1 95.1 75.4 87.4 94.3 73.2 96.8 79.7 90.1 85.6
WWH6,12 76.7 94.6 71.4 86.3 95.0 73.1 99.3 73.2 93.7 86.2
LTD6 57.5 94.2 76.9 84.3 92.5 73.9 88.2 80.6 88.5 83.2
LTD12 60.2 94.3 76.5 84.2 93.2 73.5 91.9 80.3 89.6 83.9
LTD24 61.5 94.1 76.6 83.9 93.8 74.3 91.6 80.4 88.3 84.0

Table 1: Classification precision results for different categories and in weighted average.
Categories relative occurrences are shown under the name. “Base” is the base model without
additional descriptors. The subscripts {G,3,6,12,24} in WWH and LTD refer to the value of
window standard deviations {+∞,d/3,d/6,d/12,d/24}, respectively.

with the ground truth label map, highlighted inaccuracies in the localisation of the object
borders in the ground truth maps. In some occasions this penalises the accurate segmentation
provided by our segmentation method. This is illustrated in Fig. 3 in which details of both
the ground truth and the estimated label field are depicted for two example images.

Windowed Words Histogram. Labelling results are presented in Table 1, reporting av-
erage precision and the category breakdown. For the WWH descriptor we chose σs ∈
{+∞,d/3,d/6,d/12}, where d is the image diagonal, for the standard deviation of the Gaus-
sian that determines the aperture of the histogram window. When the WWH descriptor is
applied to the model, results are sensibly affected. However, if the scale of the window is
not consistent with coherent words, the descriptors fail in conveying relevant information
and this results to noise in the features and therefore in degraded performance. In particular,
we experience an improvement for all the scales except the global one. This is in contrast
with previous findings [24], that can be however explained with the fact that the location of
the words on salient point ties them to objects increasing their positional significance. We
also tested a combination of descriptors at multiple scales (the two best-performing ones),
obtaining further improvements. The combination has been obtained simply appending the
related feature vectors. Our strategy clearly outperforms similar methods in the literature
tested over the same dataset. The variability on the single categories precisions when chang-
ing the window size parameter is due to the fact that in the training the global accuracy is
maximised rather than the single category ones, and the categories better described at each
scale are favoured in different cases.

Local Topic Distribution. When applying the LTD descriptor, a slight drop of perfor-
mance can be noticed in comparison with the WWH, even though the performance still
reports improvements over the base model, placing the method roughly at the same level of
similar works in the literature. As hinted when introducing the LTD descriptor, this is likely
to be due to the simplification assumption associated to the dimensionality reduction before
local word aggregation. The independence between contributions is highlighted in the very
reduced performance difference with different configurations, with σs = {d/6,d/12,d/24}.
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Figure 4: Two examples of segmented images from the MSRC database. In the first column
the original images, on the second one the ground truth, while the last three columns contain
the segmentation according to the base model, the WWH6,12 and the LTD12 respectively.

To have a visual insight of the improvements associated to our method, labelled examples
are shown in Fig. 4. In the selected images is possible to see how visual words help in
enhancing the precision in the classification of border patches or entire objects.

5 Conclusions

We proposed two different strategies to improve context awareness for image semantic seg-
mentation through the application of distributed descriptors to a CRF graphical model. The
graphical model is based on patches that densely cover the image. Distributed descriptors
built on visual words taken at salient points complement the patches. Visual words link to
robust visual traits of object instances, and their reliability in describing object categories is
proved. In contrast, dense patches are homogeneous in colour and texture and isolate clusters
of pixels that are likely to belong to the same object.

Two descriptors are proposed and analysed. The WWH descriptor is based on histograms
of visual words in the vicinity of each patch, where the single word contributions to the
histogram are weighted on the distance from the patch centre. In this way, only local words
are accounted when labelling a patch. Word position information is considered as a result,
addressing one of the main shortcomings of the bag-of-words model.

In the WWH descriptor the feature vector is reduced in dimensionality via PCA to make
the integration to the CRF framework possible. In contrast, the proposed LTD descriptor
associates a compact representation, i.e. a distribution of latent topics, to the single word,
and topics distributions are then simply added up for each patch, weighting the contributions
on the word distances from the patch centre. The simplification introduced in reducing the
dimensionality of the feature before the integration step partially affects the results, but it
introduces greater flexibility in considering words distributions. In particular, one of the
future directions of the work is towards dynamic windows when considering local word
distributions, to reflect the fact that the words associated to each object instance in the image
are not always close to the patch centre. Experiments on the MSRC public dataset show
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clear improvements of our method when compared to other recent proposals in the field.
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