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Semantic image segmentation is the task of assigning a label of a seman-
tic category (e.g. car, bicycle, tree) to every pixel of an image. This task
is posed as a supervised learning problem in which the appearance of ar-
eas that correspond to a number of semantic categories are learned from a
dataset of manually labelled images. In this context, the major challenge
is how to jointly consider visual properties and the context of a pixel at
different scales. To this end, our contribution is the proposal of a method
that combines a region-based probabilistic graphical model that builds
on the recent success of Conditional Random Fields (CRFs) in the prob-
lem of semantic segmentation [2, 6], with a salient-points-based bags-of-
words paradigm. Visual words located at salient points have proved very
powerful for object modelling [1, 5] but have been rarely used for se-
mantic segmentation. Compared to similar methods based on distributed
features [6, 7], our approach effectively combines complementary com-
plementary information from patches and salient points. In particular,
two different integration strategies are explored. The first one is to build
(weighted) histograms of local words distributions, the other one is to
consider weighted distributions of latent topics associated to the words by
the means of probabilistic Latent Semantic Analysis (pLSA) [5].

The analysis of an image proceeds as follows. In a first stage, the im-
age is oversegmented into patches. These are obtained via the Normalised
Cuts (NCuts) spectral clustering algorithm [4]. Patches are then described
with visual features that depend on their colour (hue histogram), texture
(textons), and position (normalised centre coordinates).

The graph on which the CRF is imposed is then obtained. We use a
tree obtained from the connectivity graph given by the oversegmentation.
A tree structure allows for fast exact inference in the CRF. This is im-
portant in terms of both algorithm performance and for the convergence
in the training step. Reducing the patch connectivity leads to limited con-
text consideration: we however maximise the correlation between patches
by linking patches coherent in appearance. In the proposed appearance-
coherent Minimum spanning Tree (acMST) algorithm, edge weights de-
pend on the similarity between the hue part of the linked patches descrip-
tors. The distance measure is the symmetric Kullback-Leibler divergence,
defined for two distributions P,Q as

DKLs(P||Q) = DKL(P||Q)+DKL(Q||P) , (1)

where DKL is the (asymmetric) KL divergence.
A labelling y is a vector y = (y1, . . . ,ym) for m image patches, where

yi ∈L = {l1, . . . , ln}. The CRF imposes an a posteriori probabilistic dis-
tribution for the labelling over the nodes of the patch graph G = {V ,E },
given the features X. This is modelled as a Gibbs distribution

p(y|X;θ) = exp [Ψ(y,X,θ)]/Z(X,θ) , (2)

where θ is the model parameter vector, and Z a normalisation factor. The
local function Ψ is a summation of terms depending on clique variables,
that in our model are unary and pairwise. Therefore

Ψ(y,X,θ) = ∑
v∈V

(θyv ·xv)+ ∑
(i, j)∈E

θyi,y j . (3)

The loose notation θyv in the first summation indicates a linear, category-
dependent parameter appearance vector and θyi,y j a (symmetric) label
compatibility coefficient encoding patches dependences. Partial labelling
of a subset Va ⊆ V of nodes is considered by averaging over the latent
nodes Vl = V \Va, p(ya|X;θ) = ∑yl∈Vl

p(y|X;θ). Inference in the model
is done via the Belief Propagation (BP) algorithm. In the training phase,
the Maximum A Posteriori (MAP) training set probability is maximised.
A quasi-Newton iterative method is used to find the optimal parameters.

model precision model precision
Lit. [7] 84.9 WWH6,12 86.2
Base 82.9 LTD24 84.0

Table 1: Classification precision results (average). “Base” is the baseline
without additional descriptors. The subscripts {6,12,24} in WWH and
LTD refer to the value of window standard deviations {d/6,d/12,d/24}.

Figure 1: Segmented image (with acMST), ground truth, and segmenta-
tion according to baseline model, WWH6,12 and LTD24 respectively.

Descriptors based on visual words taken at salient points are at first
detected and represented via the SIFT algorithm [3]. Visual words are
obtained by clustering of the descriptors. Descriptors based on local word
distributions are calculated for each patch. Both the strategies are based
on histograms of word contributions. These are weighted by a Gaussian
ws(l, lp) ∝ N (‖l− lp‖,σ2

s ), l, lp being the word location and patch centre
respectively. Descriptor scale changes with the parameter σs, and differ-
ent scales can be combined by descriptors concatenation. The first pro-
posed descriptor is the Windowed Words Histogram (WWH), that is, the
histogram of words in the vicinity of a patch (reduced in dimensionality
by PCA). Alternatively, for the Latent Topic Distribution (LTD) descrip-
tor, a posterior distribution over latent topics is at first associated to each
word via pLSA. The final patch descriptor is obtained as weighted sum of
local posteriors. The advantage of this second approach lays in the sep-
arate representation of the semantic content for each visual word. Word
contributions are therefore considered as independent in the CRF. The ad-
ditional descriptors are considered in the CRF framework with additional
appearance vectors θ d

yv
(compare with Eq. (3)).

Results on the publicly available MSRC database of 9 categories show
improvements over the baseline and the state of the art, as reported in Ta-
ble 1. When applying the LTD descriptor, a slight drop of performance
can be noticed compared to the WWH. This is likely to be due to the sim-
plification assumption associated to the dimensionality reduction before
local word aggregation. In Fig. 1 the segmentation and acMST output, as
well as the classification results with different methods, are shown.
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