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Abstract

Recognizing multiple interleaved activities in a video requires implicitly partitioning
the detections for each activity. Furthermore, constraints between activities are impor-
tant in finding valid explanations for all detections. We use Attribute Multiset Gram-
mars (AMGs) as a formal representation for a domain’s knowledge to encode intra- and
inter-activity constraints. We show how AMGs can be used to parse all the observa-
tions into ‘feasible’ global explanations. We also present an algorithm for building a
Bayesian network (BN) given an AMG and a set of detections. The set of labellings of
the BN corresponds to the set of all possible parse trees. Finding the best explanation
then amounts to finding the maximum a posteriori labeling of the BN. The technique
is successfully applied to two different problems including the challenging problem of
associating pedestrians and carried objects entering and departing a building.

1 Introduction
Automatic surveillance requires recognizing activities that involve one or more interacting
agents. While most activity recognition techniques focus on recognizing a single activity,
realistic surveillance involves multiple interleaved activities, often extending over a long
duration. In these situations, the activities are often mutually constrained. For example, a
person entering a building can be observed departing only once at a later time. In visual in-
terpretation, these constraints can be exploited to disambiguate uncertain visual data through
seeking a globally consistent explanation [4, 8]. However, a general way to formalise the
set of globally consistent explanations for a given domain is not yet available. In the current
paper, we show how this can be achieved using a grammar formalism.

During the 80s and early 90s, picture layout grammars were used to parse two-dimensional
visual languages like sketches, flowcharts and state diagrams [9, 10, 16]. Grammars have
also been used for activity recognition. The work of Ivanov and Bobick [12] highlighted
the importance of formal methods to encode expert knowledge for recognizing activities in
video. They used Stochastic Context Free Grammars (SCFG) to represent the ways in which
complex activities can be constructed. The Earley-Stolcke parser generates the best parse of
the detected sequence of primitive events given the grammar. They evaluated their approach
on gesture recognition and surveillance within a car park. However the method expects a
single activity, involving one or more interacting agents, in each given sequence. SCFG has
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also been used to recognize visual activities in a blackjack game [17]. Given one dealer (as-
sumed known) and multiple players, a parser infers the sequence of the game and identifies
the winner. The parser corrects possible detection errors by an exhaustive search which is
tractable given the small number of detections in one game.

Although context-free grammars have been used successfully for recognizing sequen-
tial activity patterns [12, 17], they do not easily extend to interleaved activities where the
patterns are overlapping and not easily segmented. A related problem exists for graphical
components in two-dimensional sketches - there is no natural sequential ordering. Attribute
Multiset Grammars (AMG) have been proposed for such problems [10]. Each rule in an
AMG rewrites a nonterminal symbol as a multiset instead of a string. It combines this with
attributes to extract meaning from parse trees and to constrain the application of rules, for
example to impose geometric constraints between entities. We will return to explain AMGs
in more detail in Section 2.1.

Attribute graph grammars are closely related and have been used to identify man-made
rectangular objects like tables, floor tiles and windows in static images [11]. Strong hypothe-
ses of rectangles from edge detection are used to hypothesize larger structures through the
application of grammar rules. This can initiate a search for weaker evidence of rectangles
consistent with these larger structures. To parse the given image, recursive top-down/bottom-
up parsing is used. At each iteration, Data Driven Markov Chain Monte Carlo (DDMCMC)
samples from the possible hypotheses in the grammar, and the evidence in the image is
tested. The paper shows the power of attribute grammars, as the parsing conveys informa-
tion up and down the parse trees. Attribute graph grammars have also been used to detect
anomalous events in a car park [13], i.e. those inputs that could not be parsed according to
the grammar. In a video with multiple interleaved activities, the set of objects are assumed
to be partitioned into the different threads of activity.

A recent attempt to overcome an assumed partitioning of primitive events into activity
threads uses attribute graph grammars to analyze activities in a car park [15]. For a pick-up
event, for example, several of the detected people and cars could have performed the activ-
ity. The attribute graph grammar together with a set of detected objects determines a set of
possible interpretations of a scenario. A probability distribution over this set of interpreta-
tions is expressed as a Markov Random Field (MRF), with a list of candidate objects at each
vertex. The pairwise potentials in the MRF are derived from the proximities of people and
cars. While this framework can partition the primitive events into activities, it does not take
into consideration the constraints between activities. In some situations, this could lead to
globally inconsistent (infeasible) explanations. In the car park domain, a car can drop-off
several people, yet a person can be dropped off by only one car. Such constraints have been
expressed by first order logic rules in [19]. Markov logic networks are then used in the infer-
ence process. This approach though does not distinguish between rules that define activities
and those that constrain feasible explanations. An entirely different approach defines events
first and then adds constraints, and is solved as a constraint satisfaction problem [18]. In this
work, we wish to combine a constraint satisfaction approach with the expressive power of
grammars.

In [6], we searched for a constrained explanation for the Bicycles problem by main-
taining a multiple-hypotheses tree (MHT). The activities and the constraints were textually
described. A solution to the bicycles problem correctly links people and bicycles, and ‘drops’
followed by ‘picks’ in a bicycle rack. In our previous work [8], events in a chosen domain
are assumed to form a hierarchy, with primitive events at its base and compound events
(composed of simpler primitive and compound events) at higher levels. The hierarchies are
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expressed using diagrammatic trees, along with implied constraints on the ‘feasible’ hierar-
chies. The work assumes the compositional hierarchy is not recursive, and represents the
probability distribution over possible explanations using a Bayesian network (BN). We pro-
posed an approach for searching such a BN for the Maximum a Posteriori (MAP) solution
using Reversible Jump Markov Chain Monte Carlo (RJMCMC), which outperformed MHT.

In this paper, we augment the method in [8] with a formal grammar to characterise the
set of possible global explanations. This is sufficiently general to be applicable in differ-
ent domains. We use Attribute Multiset Grammars, where activities and constraints can be
formally defined, to represent global explanations. Parsing a set of detections by such a
grammar would explain all detected events and group them into threads of activities,
providing a ‘feasible’ explanation that satisfies the domain’s intra- and inter-activity
constraints. To find the best parse tree given a set of detections, we present an algorithm
that transforms the grammar into a Bayesian network (BN). The set of possible labellings of
the Bayesian network represents all parse trees for the given set of detections. The generality
of this formalism is demonstrated by re-formulating the Bicycles problem [8], and giving the
specification for a challenging new problem in which the task is to link people and carried
bags into and out of a building. Section 3 tests the approach on one day of recorded video
along with results that demonstrate the framework’s ability to provide global explanations.

2 The method
This section describes how attribute multiset grammars can encode sets of complex visual
activities and how all the events detected in a video sequence are parsed into a global expla-
nation. Constraints on the attributes govern the parsing process and confine the parse trees
to feasible explanations. The section then presents an algorithm to map a set of detections,
given the domain’s AMG grammar, into a Bayesian network structure. The prior and con-
ditional probabilities contained in this BN are associated with the different grammar rules,
and obtained from expert knowledge with some parameter training. The desired explanation
is then the Maximum A Posteriori (MAP) solution of the BN.

2.1 Attribute Multiset Grammars
Attribute Grammars were first introduced by Knuth by adding attributes to the terminal and
nonterminal symbols of a grammar [14]. They are also referred to as Feature-Based Gram-
mars (FBG) [2] and Attribute-Value Grammars [1]. These attributes can be used in three
ways. The first is to propagate information towards the root of the parse tree; ancestors can
derive their attributes from those of their descendants. The second is to propagate attributes
down towards the leaves; descendants inherit characteristics of their ancestors. The third
is to use attributes to govern the application of production rules, thereby constraining the
language generated by the grammar.

While a conventional (context-free) grammar rewrites a symbol into a sequence of sym-
bols, in multiset grammars production rules rewrite a symbol into a multiset 1. Attribute
Multiset Grammars (AMG) were introduced in [10] for representing the constituents and
layout of a picture. We define an AMG G = (N, T, S, A, P) where N is the set of nontermi-
nal symbols denoted with capital letters, T is the set of terminal symbols denoted by lower
case letters, S is the start symbol (S ∈ N), A(x) is a set of attributes defined for the symbol

1A multiset (or a bag) is a generalization of a set where the order is irrelevant although each symbol can still
appear more than once
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x ∈ N ∪T , and P is the set of production rules. We use the notation x.a to mean the value
of the attribute a ∈ A(x). Attributes are of two types, A(x) = A0(x)∪A1(x), where A0(x) is
the set of synthetic attributes which have predefined values for all terminals and are calcu-
lated for nonterminals based on their descendants, and A1(x) is the set of inherited attributes
which are calculated based on the attributes of the ancestors.

Each production rule p ∈ P is a 3-tuple (r, M, C) where r is a syntactic rule of the form
X0→X1,X2, ...,Xnp that rewrites the nonterminal X0 as a multiset of nonterminal and terminal
symbols. M is a set of attribute rules, where each rule m ∈M assigns a value to one of the
attributes of the symbols involved in r. C defines a set of attribute constraints that govern the
application of the production rule; the production rule can only be applied if all the attribute
constraints are satisfied. To illustrate, consider the AMG Ga = ({S,A,B}, {α , β , γ}, S, A0(A)
= A0(B) = A0(α) = A0(β ) = A0(γ) = {time} and A1(B) = A1 (β ) = {count}, P). Figure 1
shows the production rules.

rule Syntactic Rule (r) Attribute Rules (M) Attribute Constraints (C)
p1 S → A?, B?, α?,γ?

p2 A → α , B A.time = α .time+B.time α .time < B.time
B.count = 1 B.count 6= 1

p3 B → β ,γ B.time = γ .time β .time < γ .time
β .count = 1 β .count 6= 1

Figure 1: Production rules for a simple Attribute Multiset Grammar (Ga)

Given an input video, detectors are used to retrieve a multiset of detections D. Each de-
tection is an instance of one of the terminals T together with assigned values for the synthetic
attributes defined for that terminal. The set of all derivations of D, given the AMG, is the set
of all possible explanations for the input video. For the grammar Ga, suppose the detectors
generated the following multiset D = {α1(time = 1),α2(time = 2),β1(time = 2),γ1(time =
3),γ2(time = 4)} - subscripts distinguish different instances of the same terminal. Figure 2
shows two possible derivations (parse trees). Following the approach proposed in [8], we

Figure 2: Two parse trees
given a multiset of detec-
tions and AMG Ga

Figure 3: The Bayesian network for the detections D and
AMG Ga. The two labellings reflect the parse trees in Fig-
ure 2. A node is labeled true if it appears in the parse tree

build a Bayesian network (BN), with conditional links between events and their associated
observations, between compound events and their constituent events, and between nodes and
a deterministic random variable when enforcing consistency in the parse tree. The desired
explanation is the MAP for this network. Figure 3 shows this Bayesian network for the spec-
ified detection multiset D along with two labellings that reflect the parse trees in Figure 2. A
hidden random variable (RV) represents each possible nonroot nonterminal in a parse tree,
and is labeled true if the nonterminal appears in the parse tree, and false otherwise. Algo-
rithm 1 details the steps for building a BN out of a set of detections and an AMG grammar.
The algorithm distinguishes between the synthetic and inherited attribute constraints. Inher-
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input : Grammar G = (N, T, S, A, P), detections multiset D
output : Bayesian Network Structure

initialize an empty Bayesian Network (BN)1
orders rules P starting with those containing terminals then bottom-up2
foreach terminal instance t ∈ D3

add hidden RV to BN of type t4
if t has synthetic attributes then5

add a related observed RV to hold the attribute values6

foreach rule p ∈ P (p.r : X0→ X1,X2, ...,Xn)7
if X0 6= S then8

Let I(Xi) be the set of nodes in BN of type Xi9
foreach tuple b ∈ I(X1) × I(X2) × ... × I(Xn)10

if b satisfies attribute constraints p.C then11
add hidden RV to the BN of type X012
foreach attribute rule m ∈ p.M13

if m updates a synthetic attribute then14
run m assigning a synthetic attribute value to X015

add a related observed RV to hold attribute values16
all nodes in the tuple b parent the created hidden RV17

Let Nodesn be the set of all hidden RVs associated with nonterminal symbols N18
while Nodesn 6= φ do19

find one set Nodesp with inherited constraints limiting the same inherited attribute values20
Nodesn = Nodesn - Nodesp21
if size of Nodesp > 1 then22

add deterministic RV c to hold the inherited constraints23
all nodes in Nodesp parent the deterministic RV c24

Algorithm 1: Mapping a multiset of detections D to the Bayesian network structure that repre-
sents the probability distribution over the set of possible parses, given an AMG grammar G

ited constraints define constraints between the different activities. For example, to recognize
the event of picking a person up by a car, the person can be picked up once, while the car
can still pick up other people. The number of pick-ups of each individual is thus constrained
to a maximum of 1. Such inherited constraints are enforced by adding deterministic random
variables linking the inter-dependent activities.

In the next two subsections, we present an AMG for two different problems. A brief
description of the prior and conditional probability distributions is given in Section 3.

2.2 An AMG for the Bicycles problem
The Bicycles problem [8] aims at recognizing bicycle drop and pick events, as well as linking
the drop of a bicycle to its subsequent pick. For this problem, an AMG Gb is defined as
follows;

• Two detectors are required, one to retrieve people tracked within the racks area (x) and
another to detect bicycle clusters (y).

• N = {S, V, Z}; T = {x, y, u} where u represents unseen events, Z links a person to a
bicycle, and V links drop and pick events.
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• A0 (x) = {au, traj}, A0 (y) = {au, pos}, A0 (Z) = {au, pos, match}, A0 (V) = {match},
A1(x) = A1(y) = A1(Z) = {action, count}, A1 (V) = {action}
A(S) = A(u) = φ

where au (integer) represents the activity unit during which the symbol is detected [8],
traj is a set of bounding boxes representing the trajectory and extent of a tracked object,
pos is a bounding box around a bicycle cluster, match (real) assesses the likelihood of
linking two detections into a compound event, count (integer) represents the number
of activities in which a detection participates, and action (string) describes the activity.
Two functions are defined on these attributes:
ψZ (traj, pos): finds the maximum overlap between a trajectory and a bicycle cluster.
ψV (pos, pos): finds the pixel-to-pixel match between two bicycle clusters.

• We chose an attribute called ‘action’ and defined it for all grammar symbols. For each
symbol, the values assigned to ‘action’ by the production rules form the set of non-
false labels for nodes of that type. For example, nodes of type Z in the BN can take
any of the labels {drop, pick, false}, while nodes of type V have two possible labels
{drop-pick, false}.

The production rules in Figure 4 encode all the domain’s knowledge and constraints. Algo-
rithm 1 transforms this AMG for a set of detections into the same BN as that obtained in [8].

Syntactic Rule (r) Attribute Rules (M) Attribute Constraints (C)
p1 S → V?, x?, y? y.action = “noise” y.count < 1

x.action = “pass-by” x.count 6= 1
p2 V → Z1, Z2 V.action = “drop-pick” Z1.au < Z2.au

Z1.action = “drop” Z1.count 6= 1
Z2.action = “pick” Z2.count 6= 1
V.match = ψV (Z1.pos, Z2.pos)
Z1.count = Z2.count = 1

p3 V → Z, u V.action = “drop-only” Z.count 6= 1
Z.action = “drop”
Z.count = 1

p4 V → u, Z V.action = “pick-only” Z.count 6= 1
Z.action = “pick”
Z.count = 1

p5 Z → x, y x.action = Z.action x.au = y.au
y.action = Z.action x.count 6= 1
Z.au = x.au
Z.pos = y.pos
Z.match = ψZ (x.traj, y.pos)
x.count = 1
y.count = y.count+1

Figure 4: Production rules for the bicycle attribute multiset grammar Gb. Subscripts are used
to distinguish between occurrences of like nonterminals in the same production rule.

2.3 An AMG for the Enter-Exit Problem
We now consider a new problem and define the activities using an AMG. A different AMG
is specified for each new problem, yet the same technique is used to convert the AMG to
a BN, and for searching the BN for the MAP solution. The task is to associate individuals
entering and exiting a building along with bags they may be carrying. For example, we
wish to recognize an individual entering a building with a bag and departing without it. Two
detectors are needed to detect people (t) and carried objects (b). An AMG Gc is defined as
follows
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Figure 5: A sample parse tree and labelled BN for the Enter-Exit problem

• Two detectors are required, one to detect people (t) and one for carried objects (b).

• N = {S, X, E, C, B}; T = {t, b, u} where S is the start symbol, X finds exit-enter links,
E finds enter-exit links, C links people to carried objects, B represents one or more
carried objects for each person, and u represents unobserved events.
• A0 (t) = {trajID, time}, A0 (b) = {trajID}, A0 (B) = {NoBags, trajID},

A0 (C) = {time, NoBags}, A0 (E) = A0 (X) = {bagDiff, match}
A1(t) = A1(b) = A1 (B) = {action, count}, A1 (C) = {action, eCount, xCount},
A1 (E) = A1 (X) = {action}, A(S) = A(u) = φ

where trajID (integer) is an id for each trajectory, time (integer) indicates when the
event happened, NoBags (integer) represents the number of carried bags, bagDiff (in-
teger) represents the number of non-matching bags, match (real) assesses the likeli-
hood of matching two trajectories, {count, eCount, xCount} (integer) represent the
number of different activities in which the detection participates, and action (string)
describes the activity.
One function is defined ψM (traj, traj) for the match between two trajectories.

Figure 6 shows the production rules of the AMG for this problem. Figure 5 shows a parse
tree for a multiset of detections along with a labeled BN, built using Algorithm 1.

3 Experiments and Results
Experimental results for the Bicycles problem were presented in our earlier work [8] as the
BN used there is the same as the one generated from the AMG. We focus here on results
for the enter-exit problem, demonstrating the power of the AMG formulation and algorithm.
We recorded a full day (12 hours) outside a building entrance. 326 instances of someone
passing through the entrance area were detected after manually rejecting groups of people
walking together. The baggage detector from [7] was run on the dataset resulting in 429
candidate bags. Figure 7 shows the viewpoint and a few detected bags. To distinguish false
detections from actual carried objects, the frequency (ratio of frames during which the bag
was detected) as well as the colour similarity between the bag and the adjacent clothing are
used. From hand-classified bags for the first two-hours of video, we estimated a Gaussian
likelihood function for the frequency given the class of the detection (noise or carried-object).
Similarly, we estimated a Gaussian likelihood function for the colour similarity. For the
given camera view, we estimate the conditional probability distribution for the trajectory’s
mean direction given someone is entering, exiting or passing by. The conditional probability
density is estimated using supervision and represented using von Mises distribution.
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Syntactic Rule (r) Attribute Rules (M) Attribute Constraints (C)
p1 S → X?, E?, t?, b? b.action = “noise” b.count 6= 1

t.action = “pass-by” t.count 6= 1
p2 X → C1, C2 C1.action = “exit” C1.action 6= “enter”

C2.action = “enter” C2.action 6= “exit”
X.action = “exit-enter” C1.time < C2.time
X.match = ψM (C1, C2) C1.xCount 6= 1
X.bagDiff = |C1.NoBags - C2.NoBags| C2.xCount 6= 1
C1.xCount = C2.xCount = 1

p3 X → C, u C.action = “exit” C.action 6= “enter”
X.action = “exit-u” C.xCount 6= 1
C.xCount = 1

p4 X → u, C C.action = “enter” C.action 6= “exit”
X.action = “u-enter” C.xCount 6= 1
C.xCount = 1

p5 E → C1, C2 C1.action = “enter” C1.action 6= “exit”
C2.action = “exit” C2.action 6= “enter”
E.action = “enter-exit” C1.time < C2.time
E.match = ψM (C1, C2) C1.eCount 6= 1
E.bagDiff = |C1.NoBags - C2.NoBags| C2.eCount 6= 1
C1.eCount = C2.eCount = 1

p6 E → C, u C.action = “enter” C.action 6= “exit”
E.action = “enter-u” C.eCount 6= 1
C.eCount = 1

p7 E → u, C C.action = “exit” C.action 6= “enter”
E.action = “u-exit” C.eCount 6= 1
C.eCount = 1

p8 C → t, B t.action = C.action t.trajID = B.trajID
B.action = C.action t.count 6= 1
C.NoBags = B.NoBags B.count 6= 1
C.time = t.time
t.count = B.count = 1

p9 C → t t.action = C.action t.count 6= 1
C.NoBags = 0
C.time = t.time
t.count = 1

p10 B → b? b.action = “carried” bi.trajID = b j .trajID
b.count = 1 b.count 6= 1
B.NoBags = |b*|
B.trajID = b.trajID

Figure 6: Production rules for the enter-exit attribute multiset grammar Gc

Matching two trajectories (referred to as ψM in the grammar Gc) used the height and
clothing colour along with matching any carried objects. The projected height at each frame
was estimated, up to a constant factor, using a cross-ratio after manually retrieving the van-
ishing point and the horizon vanishing line [5]. Given the projected heights for two trajecto-
ries, the Welch t-test estimated the goodness of match between the two distributions. Super-
vised training is used to map the scores into likelihoods for correct and incorrect pairs. To
match the clothing, a per-bin median histogram was calculated [3]. Histogram intersection
scored the clothing colour match, and supervision converted those matches into Gaussian
likelihoods. Similarly, carried objects were matched based on colour and the relative height
of the detected bag to that of the individual. Priors and conditional probabilities for the BN
were selected based on a separate one hour recording.

For the 326 person detections and associated detected bags, a BN is constructed from
Gc using Algorithm 1. The number of hidden RVs in the generated BN is 190849 (|I(B)|
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Figure 7: The viewpoint and several baggage detections

Figure 8: Precision-Recall
curve for three search methods.

Local Global
Greedy MHT RJMCMC

Paired 13 14 16 19
Unpaired 49 48 46 43
Incorrect 173 133 135 142
Pairs

Figure 9: The number of correctly paired activities,
given expertise knowledge priors, comparing the un-
constrained local explanation with global feasible ex-
planations.

= 116, |I(C)| = 435, |I(X)| = |I(E)| = 95149). A MAP estimate was obtained using greedy
search, Multiple-Hypotheses Tree (MHT) and RJMCMC [8]. In greedy search, given the
set of detections, the activity with the highest posterior is selected iteratively until the poste-
rior of the global explanation can no longer be improved. In MHT search, the best k global
explanations are kept as the detections are explained in sequence. Using RJMCMC, the
space of explanations is sampled to find the MAP. A ground truth was manually obtained in
which 62 pairings were found, with each pair connecting a person entering the building to
the same person leaving later, or a person leaving the building and subsequently returning
to it. Figure 8 presents a Precision-Recall curve that compares the three search techniques.
The curve is drawn by changing the conditional prior for connecting pairs or leaving them
disconnected. Figure 9 shows the number of correctly paired activities. Notice that the best
search technique (RJMCMC) only found 19 of the 62 ground truthed pairs. This is because
height and colour are only weakly discriminant, as they vary under segmentation errors and
illumination changes. Figure 10 shows three sequences that were correctly retrieved only
when a constrained global explanation is found using RJMCMC. The second example failed
to be correctly paired originally because the carried object as the person returns to the build-
ing was classified as a false detection. As the search progressed, a higher posterior was
found by changing the labeling of the bag and linking the ‘exit’ to the subsequent ‘enter’.
The figure also shows a correctly linked ‘exit-enter-exit-enter’ sequence.

Figure 10: Correctly paired sequences when global constrained explanations are considered.
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10 DAMEN, HOGG: AMGS FOR GLOBAL EXPLANATIONS OF ACTIVITIES

4 Conclusion
This paper highlights the power of Attribute Multiset Grammars to formalise a domain’s
activities in practical computer vision applications. AMG defines intra-activity temporal
and spatial constraints, and inter-activity constraints that relate different activities. A parse
tree for a set of detections provides a global feasible explanation. The paper presents an
AMG for the previously presented Bicycles problem as well as for a task of associating
pedestrians and carried objects entering and exiting a building. The experimental results on
the second problem demonstrate the effectiveness of using the AMG formalism in finding
better explanations. The extent to which this formalism is truly general and can be applied
to other problems is an interesting question for future work.

References
[1] Steven P. Abney. Stochastic attribute-value grammars. Computational Linguistics, 23

(4):597–618, 1997.

[2] James Blevins. Feature-based grammar. In R.D. Borsley and K. Borjars, editors, Non-
transformational Syntax: A Guide to Current Models. Blackwell, TO APPEAR.

[3] R. Bowden and P. KaewTraKulPong. Towards automated wide area visual surveillance:
tracking objects between spatially-separated, uncalibrated views. Vision, Image and
Signal Processing, 152(2):213–223, 2005.

[4] Michael Chan, Anthony Hoogs, Rahul Bhotika, Amitha Perera, John Schmiederer, and
Gianfranco Doretto. Joint recognition of complex events and track matching. In Proc.
Computer Vision and Pattern Recognition (CVPR), volume 2, pages 1615–1622, 2006.

[5] Antonio Criminisi, Ian Reid, and Andrew Zisserman. Single view metrology. In Proc.
Int. Conf. on Computer Vision (ICCV), volume 1, pages 434–441 vol.1, 1999.

[6] Dima Damen and David Hogg. Associating people dropping off and picking up objects.
In Proc. British Machine Vision Conference (BMVC), volume 1, pages 72–81, 2007.

[7] Dima Damen and David Hogg. Detecting carried objects in short video sequences. In
European Computer Vision Conference (ECCV), volume 3, pages 154–167, 2008.

[8] Dima Damen and David Hogg. Recognizing linked events: Searching the space of
feasible explanations. In Proc. Computer Vision and Pattern Recognition (CVPR),
pages 927–934, 2009.

[9] Larry Davis and Thomas Henderson. Hierarchical constraint processes for shape anal-
ysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,, PAMI-3(3):
265–277, 1981.

[10] Eric Gollin. A Method for the Specification and Parsing of Visual Languages. PhD
thesis, Brown University, 1991.

[11] Feng Han and Song-Chun Zhu. Bottom-up/top-down image parsing by attribute graph
grammar. In International Conference on Computer Vision (ICCV), volume 2, pages
1778–1785, 2005.



DAMEN, HOGG: AMGS FOR GLOBAL EXPLANATIONS OF ACTIVITIES 11

[12] Yuri Ivanov and Aaron Bobick. Recognition of visual activities and interactions by
stochastic parsing. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(8):852–872, 2000.

[13] Seong-Wook Joo and Rama Chellappa. Attribute grammar-based event recognition and
anomaly detection. In Computer Vision and Pattern Recognition Workshop (CVPRW),
pages 107–114, 2006.

[14] Donald Knuth. Semantics of context-free languages. Mathematical Systems Theory, 2
(2), 1968.

[15] Liang Lin, Haifeng Gong, Li Li, and Liang Wang. Semantic event representation and
recognition using syntactic attribute graph grammar. Pattern Recognition Letters, 30
(2):180–186, 2009.

[16] Kim Marriott. Constraint multiset grammars. In IEEE Symposium on Visual Lan-
guages, pages 118–125, 1994.

[17] Darnell Moore and Irfan Essa. Recognizing multitasked activities from video using
stochastic context-free grammar. In National conference on Artificial intelligence,
pages 770 – 776. AAAI, 2002.

[18] Ram Nevatia, Tao Zhao, and Somboon Hongeng. Hierarchical language-based rep-
resentation of events in video streams. In Proc. of IEEE Workshop on Event Mining
(EVENT), 2003.

[19] Son Tran and Larry Davis. Event modeling and recognition using markov logic net-
works. In Proc. European Conference on Computer Vision (ECCV), 2008.


